

Real-Time Rendering and Construction of Signed
Distance Fields

Jamie Buttenshaw

BSc (Hons) Computer Games Technology, 2024

School of Design and Informatics
Abertay University

 i

Table of Contents

Table of Contents ... i

Table of Figures ... iii

Table of Tables ... v

Acknowledgements .. vi

Abstract ... vii

Abbreviations, Symbols and Notation ... viii

Chapter 1 Introduction .. 1

Chapter 2 Literature Review ... 4

2.1 Acceleration Structures ... 4

2.2 SDF Representation .. 8

2.3 SDF Reconstruction in Real-Time ... 11

Chapter 3 Methodology ... 13

3.1 Structure .. 13

3.2 Rendering .. 14

3.3 Construction .. 15

3.3.1 Top-Down Construction .. 16

3.3.2 Edit Dependencies .. 17

3.3.3 Brick Counting .. 19

3.3.4 Scanning ... 20

3.3.5 Brick Building .. 21

3.3.6 Edit Culling .. 22

3.3.7 Brick Evaluation .. 23

3.5 Testing and Evaluation .. 24

3.5.1 Method and Tools ... 25

3.5.2 Metrics .. 27

3.5.3 Test Scenarios .. 28

Chapter 4 Results ... 30

 ii

4.1 Rendering .. 31

4.2 Construction .. 34

4.3 Memory ... 40

4.4. Visual Fidelity ... 42

Chapter 5 Discussion .. 45

5.1 Results Analysis .. 45

5.1.1. Rendering Performance ... 45

5.1.2. Construction Performance ... 47

5.1.3. Memory Usage .. 51

5.1.4. Visual Fidelity ... 52

5.2 Critical Evaluation .. 54

Chapter 6 Conclusion and Future Work .. 57

6.1 Overview ... 57

6.2 Future Work ... 58

References.. 60

Appendices ... 62

Appendix 1 – Rendering Complete Data ... 62

Appendix 2 – Construction Complete Data ... 65

 iii

Table of Figures

Figure 1: A comparison between the minimum (left) and smooth minimum

(right), as defined by (Quilez, no date), of two functions. 9

Figure 2: Two iterations of brick building. .. 17

Figure 3: An example of identifying edit dependencies and selecting

relevant edits for a brick. Edits 1, 2, and 3 would be selected and edit 4

culled. ... 19

Figure 4: Spatial coherence of the bricks. Hue increases with index into

the buffer. .. 21

Figure 5: Edit count per voxel for 'Drops' for a blending radius of 0.2 and

0.5 respectively, where green signifies 1 edit and red 16 edits or greater.

 .. 23

Figure 6: A cross-section from 'Drops' brick pool, with a magnified excerpt

on the right. ... 24

Figure 7: The function used to obtain the memory consumption of the

brick pool. ... 25

Figure 8: The ground-truth render of the ‘Spheres’ scene for evaluating

fidelity. ... 27

Figure 9: The test scenes (in row-major order): Drops, Cubes, Rain, and

Fractal. .. 29

Figure 10: Average time taken to raytrace each scene for each brick size.

 .. 31

Figure 11: Average time taken to raytrace each scene as brick count

increases. ... 32

Figure 12: Average Raytracing Core Throughput for each brick size for

each scene.. 32

Figure 13: Average L2 cache hit rate for each scene for each brick size.

 .. 33

Figure 14: Average raytracing time for each scene with a brick size of

0.0625 with edit culling enabled and disabled. .. 33

Figure 15: Construction time for each scene for each brick size with edit

culling enabled. ... 35

 iv

Figure 16: Construction time for each scene for each brick size with edit

culling disabled. .. 36

Figure 17: A direct comparison between construction times with edit

culling enabled and disabled. .. 36

Figure 18: The time taken by each construction stage, as a percentage of

total construction time. .. 37

Figure 19: SM throughput as brick size increases for each scene, with

edit culling enabled. .. 37

Figure 20: SM Throughput for each scene and each brick size, with edit

culling disabled. .. 38

Figure 21: GPU Occupancy for each construction stage as brick size

increases. ... 38

Figure 22: Unit throughput during brick evaluation for the ALU and LSU

for each scene and brick size.. 39

Figure 23: Warp Launch Stall Reason for each scene and brick size. 39

Figure 24: Memory usage for each resource for each scene in MB. 40

Figure 25: Resource memory usage, displayed as a percentage of the

object's total memory usage. .. 41

Figure 26: Memory usage in MB by brick count. 41

Figure 27: The fidelity test scene rendered at brick sizes (left-to-right) 0.5,

0.25, 0.125, 0.0625. .. 42

Figure 28: The difference between each fidelity test and the ground truth

for brick sizes (left-to-right) 0.5, 0.25, 0.125, 0.0625. 43

Figure 29: Figure 27 with highly exaggerated colours for clarity. 43

Figure 30: Noise can be seen in the surface normals. A series of

magnifications are displayed on the right. ... 43

Figure 31: The Drops scene rendered with edit culling (left) and without

edit culling (right). .. 43

Figure 32: Error in the edit culling algorithm. The differences are

imperceptible when not exaggerated artificially. 44

Figure 33: Error in the edit culling algorithm, greatly exaggerated and

magnified to be perceptible. .. 44

 v

Table of Tables

Table 1: Metrics collected for rendering. ... 27

Table 2: Metrics collected for construction. ... 28

Table 3: The number of edits composing each scene. 30

Table 4: The number of bricks composing each scene when edit culling is

enabled, for each brick size. ... 30

Table 5: The number of bricks composing each scene when edit culling is

disabled, for each brick size. ... 31

Table 6: Memory usage in MB of each resource for each scene. 40

 vi

Acknowledgements

I would like to sincerely thank Erin Hughes, whom I am incredibly grateful

to have had as my supervisor, and whose wisdom and enthusiasm

inspires me to produce my best work.

I am also exceptionally thankful to my partner Viktora, for her infinite

support and for putting a smile on my face every day.

Finally, I would like to thank my parents. I am incredibly proud to be your

son. Thank you for teaching me to be hardworking, to believe in myself,

and to aim for the stars.

 vii

Abstract

Signed distance fields (SDFs) are an implicit representation of geometry

with a collection of useful properties, e.g., affinity for constructive solid

geometry, and an intrinsic definition of interior versus exterior. They are

useful for sculpting tools, deformable objects, fluids, and volumetric effects.

These techniques can be challenging to perform with polygons. Until

recently, the use of SDFs in real-time interactive applications has been

limited due to performance and memory constraints. Several studies have

documented how discrete SDFs can be rendered in real-time. However,

the study of SDFs that are also modifiable in real-time has not been treated

in depth.

This study aims to implement a memory-efficient representation of SDF

geometry that can be rendered and modified in real-time and evaluate the

feasibility of using SDFs as a rendering primitive within games.

A sparse implementation of SDFs was designed, and an application was

developed with C++ and DirectX 12 to render SDFs using hardware-

accelerated raytracing and software sphere-tracing. A top-down

construction algorithm was developed that hierarchically refines space and

uses culling solutions to accelerate distance field evaluation.

Results showed that scenes of hundreds of thousands of spatial primitives

could be rendered in 2-10ms, and that this is scalable with the number of

primitives. It also finds that efficiently culling primitive shapes is key for

construction performance, where culling improved construction times from

multiple seconds to under 100ms, often under 20ms.

The study concludes that it is feasible to make use of modifiable SDFs in a

real-time interactive application. With further work to reduce error in surface

normals, this technology could be applied in a game context. Future

research could also further improve culling solutions and integrate shading

attributes into the SDF representation.

 viii

Abbreviations, Symbols and Notation

AABB Axis-aligned Bounding Box

ALU Arithmetic and Logic Unit

BLAS Bottom Level Acceleration Structure

BVH Bounding Volume Hierarchy

CPU Central Processing Unit

CSG Constructive Solid Geometry

CSV Comma Separated Values

CTA Co-operative Thread Array

DXR DirectX Raytracing

GPU Graphics Processing Unit

GSM Group-Shared Memory

LOD Level-of-detail

LSU Load-Store Unit

RAM Random Access Memory

RT Raytracing

SDF Signed Distance Field

SM Streaming Multiprocessor

SVO Sparse Voxel Octree

VRAM Video Random Access Memory

 1

Chapter 1 Introduction

Polygons have long been the staple representation of 3D geometry for

graphical applications. They provide an efficient explicit description of

planar surfaces, and graphics hardware has evolved to rasterize them very

efficiently. However, they are not the only choice, and the more powerful

general computation capabilities of modern hardware is allowing for the

use of alternative representations of geometry to be explored. As one such

alternative, signed distance functions provide a simple implicit

representation of geometry and show interesting properties such as

support for constructive solid geometry (CSG) operations, shape

morphing, and an intrinsic definition of interior versus exterior, all of which

are typically challenging to achieve with triangle geometry. Furthermore,

unlike a discrete representation of geometry, signed distance functions are

continuous and resolution independent. This representation is well suited

for deformable surfaces, volumetric effects, and smooth organic shapes.

As they can be rendered using a simple sphere-tracing algorithm (Hart

1995), signed distance functions have seen extensive use through the

computer graphics demo-scene for decades, where unique graphical

effects not seen in games of the time were created with software such as

Shadertoy (Quilez, no date). However, adoption in real-time graphics

applications has been limited until recently. This is due to issues of scale.

Dense scenes with many objects require many signed distance function

evaluations, making real-time rendering of signed distance function-based

scenes infeasible.

To decouple rendering time from the number of primitives, an offline

process can be performed where the signed-distance functions can be

sampled regularly and stored in a grid – forming what is known as a signed

distance field (SDF). Therefore, distance values from the distance field can

be acquired in constant time with respect to the number of primitive signed

distance functions.

However, there are drawbacks and challenges with this volumetric

representation of SDFs. Firstly, what before was a compact functional

representation is now a 3D volume of samples that involves a significant

 2

memory overhead for large objects. Secondly, the resolution-independent

continuous functional representation is sacrificed for the limited precision

of discrete samples, where volumes of high resolution are required to

create visually continuous geometry. Finally, functional representations

allow the shape and resolution to be fully dynamic, as the functions must

be re-evaluated every time the scene is rendered regardless. Indeed, this

is what made signed distance functions so popular within the graphics

demo-scene. Modification of the static volume data associated with an SDF

is significantly more challenging.

Many approaches to efficiently store a distance field in a discrete

volume have been investigated. There have been various motivations and

applications for this, e.g., interactively rendering medical scans (Crassin,

2009), where a volume of data may contain billions of samples, and to

create a unified representation of 3D geometry using voxels, to replace the

requirement for high resolution displacement maps to bring detail to coarse

triangle geometry (Laine & Karras, 2010). Dreams (Evans, 2015) is a

groundbreaking example of using sparse volumes of distance fields in

games. Using SDFs as its representation of geometry allows intuitive in-

game sculpting tools, which enhance the user-generated content

experience.

Notably, Claybook (Aaltonen, 2018) shows how a fully deformable

world can be constructed from SDFs, and it is a strong example of how a

game can benefit from using SDFs as a dynamic representation of

geometry. However, Claybook does not make use of sparse volumes, and

the entire world is effectively one single object which limits how its

approach can be used for games in general.

So far, there has been little discussion about how a modifiable and

dynamic distance field can make use of a sparse and memory-efficient

representation within the context of a game.

This study researches the feasibility of real-time construction and rendering

of signed distance field geometry and evaluate how it can be used as a

real-time rendering primitive in games in general.

It aims to efficiently represent SDF geometry with a sparse volume which

can be rendered using raytracing. A construction algorithm is developed

 3

that will allow the SDF geometry to be modifiable and interactive in real-

time. It is hoped that this representation of geometry can demonstrate the

unique properties of SDFs, such that they could become more

commonplace in games in the future.

Chapter 2 will review relevant literature surrounding the

development of sparse representations of SDFs that can be rendered

efficiently and existing methods of constructing or modifying SDF geometry

on the GPU. Chapter 3 will cover the implementation details of the

technology developed in this research to represent, render, and

reconstruct SDF geometry. The method used to evaluate the developed

technology will also be discussed. The results obtained through testing are

presented in Chapter 4, followed by a thorough discussion and analysis of

these results in Chapter 5. Finally, conclusions on this research will be

drawn in Chapter 6.

 4

Chapter 2 Literature Review

A variety of techniques have been investigated to approach rendering large

SDFs in real time. The challenge associated with rendering volumetric data

arises due to the vast quantity of data involved. The naive approach of

visiting every sample along a ray, while precise, would be far too slow to

be useful in a real-time application. An acceleration structure that can

partition space is required, which allows for as few samples as possible to

be visited.

2.1 Acceleration Structures

An example of such an acceleration structure is employed in Gigavoxels

(Crassin, 2009), which proposes a novel out-of-core method to render

extremely large volumetric data sets in real time. It implements a sparse

tree structure where each node points to either a ‘brick’, an N3 block of

distance data, or a constant value in the case of a homogenous region of

space. Sibling nodes are stored adjacently so that children can be

accessed through the pointer to the first child to reduce the amount of data

to be stored per node.

Bricks are stored separately from the nodes in a ‘brick pool’. Non-

leaf nodes also own bricks, which allows for mip-mapping when sampling

the volume. This produces an inherently filtered and anti-aliased image

when the volume is rendered, which is a very desirable attribute in the

context of graphical applications such as games.

The volume is rendered using raytracing and can optionally be

encased in proxy geometry that is first rasterized. The node tree is

descended using a kd-restart algorithm, to avoid the need for a stack, until

the desired level of detail is reached. At this point, if the node contains a

homogenous value, it is integrated along the length of the ray. Otherwise,

the associated brick is fetched from the brick pool and is ray-marched to

accumulate density along the ray. In the case of opaque geometry,

traversal can be discontinued upon the first surface intersection.

Gigavoxels also demonstrates a novel and advanced ray-guided

streaming method, where the GPU efficiently feeds back to the CPU what

 5

bricks were accessed, and which missing bricks are required to be loaded

into the brick pool for the next frame.

While out-of-core rendering is an essential concept for rendering

vast voxel-based worlds, such as would likely be encountered in a game,

it is outside the scope of this research.

Using this method, volumes of size greater than the available video

memory can be rendered at real-time framerates. This allows the size of

the brick pool to be adjusted to match the available hardware capabilities

– a smaller brick pool will consume less video memory at the expense of

being able to store less bricks at a time. This sort of dynamic configuration

is important in a game context, where a technology may need to adapt to

various hardware specifications. Nevertheless, Gigavoxels demonstrates

how large amounts of voxel data can be arranged and dynamically updated

in a tree structure, which is an important idea for developing a structure

that can support the modification of SDF objects.

Efficient Sparse Voxel Octrees (Laine & Karras, 2010) is motivated by the

idea that an efficient voxel-based representation of geometry can unify

coarse geometry and fine detail. It investigates a memory-efficient

representation of voxel data that is also fast to render using a raytracing

algorithm. A compact data structure is presented, where each voxel is

represented by a node in a sparse octree. Each node contains bitmasks

from which the state of its children can be determined, and therefore the

leaf voxels do not need to be stored directly. Nodes are also stored

compactly, as the bitmasks also describe the spatial relation between a

parent and each of its children.

The concept of contours is also applied to aid rendering

performance. Contours are two parallel planes which bound the surface

within a voxel. Contours can be stored per-voxel and allow raytracing to be

accelerated by providing a tighter-fitting bounding volume compared to

simply using the voxel’s cubic bounding box. This allows a ray to visit less

voxels when searching for an intersection.

 6

Efficient SVO’s also tackle out-of-core rendering through splitting

the tree structure into ‘blocks’ and using relative pointers within each block.

Entire blocks can then be streamed in and out of memory as required.

Traversing through the octree can be done efficiently, as the index of the

next node to visit can be found by flipping bits of the current node index,

depending on the ray direction. A stack of indices is maintained that fully

describes the path from the root of the tree to the current node.

Laine & Karras demonstrate that an Efficient Sparse Voxel Octree

is an effective method of compactly storing geometry within a game context

and state that their implementation is compact and efficient. However, this

is under the assumption of static geometry. Therefore, Efficient SVO’s

present useful ideas for the compact storage of voxel data but do not

provide a method to efficient construct or modify the structure that takes

advantage of the massive parallelism offered by the GPU. The additional

overhead of calculating contours for each voxel is additional sacrifice to

construction speed in favour of rendering speed, again making this

representation better suited to static geometry.

Traditionally, as with Efficient Sparse Voxel Octrees and Gigavoxels, tree

structures would be constructed iteratively one level at a time. Maintaining

a compact and memory-efficient structure is trivial as each iteration can

simply subdivide the previous level as appropriate. However, this

significantly reduces the extent to which parallelism can be exploited. This

is acknowledged by (Karras, 2012), who demonstrates this can be solved

using an efficient parallel tree construction algorithm for spatial data that is

well suited for the GPU by utilizing the spatially coherent properties of

Morton codes. Morton codes describe the path to take through an octree

to reach a leaf. This property is utilized such that each interior node can

calculate the split position of all its children in-place, based on the depth of

the first difference in the bit representations of the Morton codes.

By allowing all interior nodes of the tree to be processed independently, all

nodes in the tree can be constructed simultaneously. This is clearly

superior to constructing each level of the tree iteratively. The performance

 7

gains are particularly pronounced for large workloads that can sufficiently

fill the GPU to take advantage of all its available resources.

However, to make use of this algorithm, a complete set of the leaf

nodes are required to be in sorted order of their Morton codes. Therefore,

this algorithm is well suited to applications that involve building an

acceleration structure around existing spatial data - for example, to

construct a bounding volume hierarchy to accelerate collision detection or

raytracing. This algorithm is not applicable in the case of constructing new

spatial data, where the next level in the tree depends on the properties of

the preceding level. In such a case the tree must be constructed one level

at a time, as interior nodes can no longer be evaluated independently.

(Evans, 2022) perform a thorough comparison of SDF traversal methods

and intersection methods, resulting in a proposed novel analytic voxel

intersection method. This method works by representing the iso-surface

within a voxel (in this case, a 23 grid of distance field samples) with a cubic

polynomial. The cubic polynomial defining the iso-surface can be

differentiated to give a quadratic polynomial, from which the solutions detail

any ray segments containing intersections with the surface. Newton-

Raphson iteration can then be performed to quickly converge on the point

of intersection. This method is compared to other analytical methods of

intersection, such as repeated linear interpolation and analytical cubic

polynomial solvers, as well as sphere tracing as an example of an iterative

method. It found that the analytic methods of calculating intersection with

the iso-surface performed significantly better than sphere-tracing. While

this is a useful result for the rendering of SDF geometry, methods of

calculating intersection have no bearing on construction performance.

A comparison of grid traversal algorithms is also performed. It

compares grid sphere-tracing – the method used in Claybook (Aaltonen,

2018), a sparse voxel set – where every voxel is uniquely associated with

a raytracing bounding box, sparse brick set – like the method used in

Dreams (Evans, 2015), and sparse voxel octree – as described by (Laine

& Karras, 2010). It was found that grid sphere tracing performed best in

open and simple scenes, whereas sparse brick set and sparse voxel octree

 8

performed well compared to other techniques in complex scenes. It is

speculated that this is due to improved cache coherency as the data is

stored more compactly. However, sparse voxel set outperformed all other

methods in general by leveraging DXR hardware therefore requiring less

work in the custom software intersection shader.

While the rendering performance of various SDF traversal and

intersection methods is thoroughly analysed, it does not touch on which

methods are best suited to fast reconstruction. Nevertheless, as grid

sphere-tracing is very similar to Claybook (Aaltonen, 2018), it is known that

it is a suitable structure for modification. Sparse voxel set is a simpler data

structure that relies on raytracing hardware, and consequently could be

simpler to construct. However, it does have a much more significant

memory overhead compared to the other methods. Sparse brick set is a

good compromise between grid-sphere tracing, which has been shown to

work with real-time modification, and sparse voxel set, which outperformed

the other methods in Evans study.

2.2 SDF Representation

Dreams (Evans, 2015) is a strong example how SDF-based geometry can

be applied within a commercial game. SDFs have a natural affinity for

constructive solid geometry (CSG), where solid 3D shapes can be

constructed through the unions and subtractions between primitive shapes.

This is used to create simple and intuitive sculpting tools – which is

favourable within a user-generated content game. Objects in Dreams,

called ‘Things’, are constructed from lists of ‘edits’, where an edit is a

primitive shape described by an analytical signed distance function. Edits

can only be union-ed with or subtracted from other edits, forming an entirely

right-leaning CSG tree. This simplifies to a linear list of edits to be applied

in order. As well as supporting binary union and subtraction operations,

Dreams allows for smoothed addition and subtraction, where the shapes

blend into each other over a specified radius. These smooth operations are

implemented using a ‘smooth minimum’ function, an example of which is

shown in Figure 1. However, as this function has an infinite range – it

 9

reaches zero at infinity – Dreams uses a formula for smooth operations that

will blend over a fixed radius (Evans, 2015, pp. 30).

Figure 1: A comparison between the minimum (left) and smooth minimum (right), as defined by

(Quilez, no date), of two functions.

Dreams does not directly render the list of analytical signed distance

functions in their functional form, but instead uses a series of compute

shaders (the ‘evaluator’) to discretize these functions into a sparse distance

field. The resulting voxels in this distance field are then grouped into ‘bricks’

of 83 voxels.

For the evaluator to be useable in a real-time application, edit culling

is performed as aggressively as possible. This is achieved through

hierarchically subdividing around the edit surfaces until a precise list of

edits per voxel is acquired. The balance between fidelity and speed is

complex. For example, not subdividing enough results in cracks in the

surface, but subdividing more than necessary results in additional

unnecessary work and greater latency. Through its advanced culling

solutions, Dreams can evaluate objects with many thousands of edits.

It is interesting to note that Dreams uses max distance norms

(Evans 2015, pp. 29). Instead of a Euclidean distance, the primitive

distance functions calculate the greatest component of the absolute value

of the distance, i.e., either the distance along the x, y, or z axis, whichever

is largest. Consequently, distance functions can be simpler and faster to

compute as generally less square root operations are required.

Furthermore, some primitives, such as ellipsoids, do not have exact

Euclidean distance functions but do have an exact max norm distance

 10

function. Finally, instead of distances implying a bounding sphere, they

imply a bounding box, which simplifies evaluation schemes that perform

culling using a grid. However, in a raytracing context, max norms can cause

issues for secondary rays which will originate from an objects surface. This

is not an issue for Dreams as it does not use raytracing.

This approach shares similarities with the approach taken by

Gigavoxels (Crassin, 2009), with key differences to make the technology

useful for a game. In Gigavoxels, the entire world is represented by one

single volume, and this is impractical for use in games. Dreams overcomes

this by, instead of tracing rays from the eye into a hierarchy of bricks,

choosing a view-dependant cut through the tree of bricks in advance and

rasterizing their bounding boxes. This also removes the need for any

indirection within the inner ray-marching loop, as each rasterized cube

directly corresponds to a single brick.

Once rasterized, parallax occlusion mapping (Tatarchuk, 2005) is

performed to reveal the SDF iso-surface within each brick. The dimensions

of the bounding boxes are adjusted to maintain a constant screen-space

size – which provides appropriate filtering of the distance field data to

produce an anti-aliased image.

While interactive CSG with SDF’s is a core gameplay mechanic for

Dreams, it does not allow for the edits themselves to be modified once

evaluated. This means that while Things in Dreams benefit from the CSG

properties of SDFs, the edits within an object are static. With newer and

more powerful hardware becoming available, an investigation into

dynamism within objects through on-the-fly animation of the edits is

worthwhile.

In all studies seen thus far, real-time uses of signed distance functions rely

on initially sampling the functions into a discrete grid of distance data.

However, an alternative approach is presented by (Aeva, 2022) that avoids

discretization altogether. The analytical signed distance functions are

sphere-traced as the scene is rendered, as often seen in Shadertoy

(Quilez, no date).

 11

To make this feasible for real-time rendering, an offline step is

performed that analyses the CSG tree to compile a large set of shaders

that can each correctly render a portion of the scene while performing the

minimum number of signed distance function evaluations per ray. While an

interesting and unique approach, unfortunately it is not suited to real-time

modification as continuously recompiling shaders at runtime is not feasible,

and not an intended nor effective use of the GPU hardware.

2.3 SDF Reconstruction in Real-Time

There are much fewer examples of how continuous reconstruction or

modification of SDF geometry can be performed in real-time. Claybook

(Aaltonen, 2018) is one key example of a fully real-time deformable SDF-

based world in a game. This world is formed of one global SDF of resolution

1024x1024x512, from which a series of five mip levels are constructed.

This single SDF volume is rendered using a sphere-tracing algorithm. Each

subsequent mip level encodes distance values twice as great as the

previous level, and this is used to accelerate sphere-tracing. By sampling

coarser mip levels, greater distances can be travelled in each sphere-

tracing iteration while still travelling conservatively. The magnitude of the

distance value sampled at the current location informs the algorithm when

it is appropriate to ascend or descend mip levels.

Modification is performed through allowing pre-defined ‘brushes’ to

be applied to the world SDF. Claybook stores the world SDF as a dense

volume; empty and non-empty regions of space are stored in memory alike.

This allows the algorithm to make use of the locality of the brushes; a brush

has a deterministic range and only the nearby affected areas of the world

SDF need to be re-evaluated when a brush is applied. This would not be

possible in the case of a compacted data structure, as location in the data

structure cannot be inferred from location in space without maintaining an

indirection table of some form. Even with such a structure, the number of

surface-intersecting voxels is not static, and the structure would require

insertions, which is a slow and difficult operation to implement. The conflict

of compaction and dynamism would require the structure to be rebuilt from

scratch per change. Therefore, it would no longer possible to take

 12

advantage of the locality of the brushes if the volume were stored in a

compact form like the methods detailed in Efficient Sparse Voxel Octrees

(Laine & Karras, 2010) or Gigavoxels (Crassin, 2009). This demonstrates

a general trade-off between the memory efficiency of a data structure and

its ability to be easily modified.

AMD’s Brixelizer (Kramer, 2023) builds a global SDF for a scene of triangle

geometry in real-time, with support for dynamic geometry. This SDF can

then be used for fast calculation of ray-scene intersections for purposes

such as global illumination.

While it shares the goal of the present research of constructing an

SDF every frame, it is in a slightly different context – where one SDF is

created for an entire scene around existing triangle geometry. As only a

single SDF is created per scene, it can be generated in a view-dependent

manner using several cascades of decreasing resolution to improve

construction performance. Brixelizer, like other technologies that have

been discussed, constructs one global distance field that is constructed

from a collection of local distance fields called ‘Bricks’. Bricks are

constructed around the surface of geometry in the scene. Once all bricks

have been constructed, a tree of the axis aligned bounding boxes (AABBs)

of the bricks is constructed in a bottom-up fashion. This could make use of

a parallel tree construction algorithm such as described by (Karras, 2012).

Instead of evaluating a distance per sample independently, a jump-flooding

algorithm is used to populate samples that do not directly intersect with the

surface. First, all samples that intersect with the surface are set to the

minimum representable value, and then distance values are extrapolated

for all remaining samples in the volume.

This is useful where calculating a distance to the surface is

significantly more complex than a binary intersection test, as is the case

with voxelizing triangle geometry. However, in the case of evaluating

analytical signed distance functions, where the product of an intersection

test is the distance value itself, this method offers no benefit.

 13

Chapter 3 Methodology

An application was developed using DirectX 12 and DirectX Raytracing to

construct and render SDF-based objects, with the focus on optimization for

objects that are re-constructed continuously. As there is a more significant

wealth of literature based on rendering sparse distance fields, this research

focused on how they can be constructed quickly by making effective use

of the parallelism of a modern GPU.

The same terminology as used in Dreams (Evans, 2015) is utilized

– where an ‘edit’ is a primitive analytical signed distance function, and a

‘brick’ is a small cubic volume of discrete distance field data. In this case,

a brick is defined as a single raytracing AABB that contains 63 distance

samples, with an additional one-voxel neighbourhood giving 83 samples in

total.

To allow for simultaneous construction and rendering, each object

will possess two full sets of resources, such that one full set of resources

can be written to without waiting for frames in flight to complete. This

doubles the memory usage of an object, but crucially reduces stalls on both

the CPU and GPU timelines and allows for asynchronous construction to

be implemented with ease.

3.1 Structure

The aim for the artefact was to design an SDF geometry representation

that is applicable to games applications in general. Therefore, no

assumptions can be made about the style of the geometry that will be

represented.

The work of (Evans, 2022) stated that a sparse brick set is likely the

best to use in a memory-constrained scenario as it is faster than a sparse

voxel octree and uses the least memory. The success of Dreams (Evans,

2015) also showed that a brick-based approach is applicable to real-time

games applications. Gigavoxels (Crassin, 2009) also demonstrates how

out-of-core rendering and mipmapping-based LOD systems can be

achieved using bricks.

 14

An additional attraction to a brick-based structure is that work for

evaluating the distance field can naturally be divided in a GPU-friendly

manner. An 83 brick of data can be processed by a thread group of 83 =

512 threads. (Evans, 2015) also uses 83 samples per brick, as that

matched the wavefront size of the targeted GPU hardware.

Even though each brick contains 83 samples, only the inner 63

samples are sphere-traced. As sampling with linear filtering will gather the

8 surrounding values and perform interpolation to achieve a single filtered

sample, a neighbourhood of voxels is duplicated for each brick to avoid the

sampler from crossing brick boundaries. This does result in 58% of each

brick being solely dedicated to adjacency data but enables the use of

texture sampling hardware to perform the interpolation. Additionally, the

performance implications of divergent reads at voxel boundaries are

avoided.

For these reasons, bricks were decided upon to be the core of idea

of the structure used in this application.

3.2 Rendering

The implemented rendering method is similar to the ‘sparse brick set’

method described by (Evans, 2022) as it also makes use of hardware

accelerated raytracing. A raytracing AABB is constructed for every brick.

These bounding boxes are placed into a bounding volume hierarchy (BVH)

to allow for hardware-accelerated raytracing. Only the leaf bricks are

required to build the BVH. All other levels of the hierarchy are discarded

after construction. If, in future, a level-of-detail or mip-mapping scheme was

introduced, similar to the one present in Gigavoxels, the full hierarchy of

nodes would need to be retained.

Once the hardware raytracing detects a potential intersection

between a ray and an AABB, a software intersection shader is invoked.

The tmin and tmax of intersection with the AABB are calculated, and this gives

a ray interval over which to check for intersection with the isosurface. The

point of intersection is transformed into the bounding box’s local coordinate

system, ranging from [0,1].

 15

An intersection between the ray and the isosurface described by the

distance field within the brick is found iteratively using sphere-tracing (Hart,

1995). Despite (Evans, 2022)’s findings that analytical intersections

performed faster, sphere-tracing is utilized because it is a simpler

algorithm, and the focus of this research is on construction methods. Even

with sphere-tracing, rendering is generally much faster than construction,

and consequently optimization efforts were focused on construction

instead. Nevertheless, it is likely that rendering performance could be

increased by implementing an analytical voxel intersection test as per

(Evans, 2022).

Distance values are sampled from the volume using trilinear

sampling. Distances need to be transformed from the formatted form stored

in the volume texture to distances in the space encoded within the AABB

– where the sphere tracing is being performed. The formatting of distance

values is discussed in section 3.3.7.

As all geometry within a brick is opaque, sphere-tracing can be

terminated upon the first intersection with the surface. The intersection

point is transformed back into object-space, so that the t-value of

intersection can be calculated as the distance between the object-space

ray origin and the object-space position of intersection.

Surface normals are calculated using central differencing to find the

gradient in the distance field at the point of intersection. The tetrahedron

technique (Quilez, no date) would be an improved method, as it only

requires 4 samples as opposed to 6.

3.3 Construction

Constructing an SDF object can be divided into 3 stages. First, the edit list

is analysed to identify dependencies between edits. Secondly, hierarchical

brick construction is performed which consists of sub-stages described in

sections 3.3.3 through 3.3.6. This set of sub-stages can be performed

iteratively until the desired brick size is reached. Finally, the edits for each

brick can be evaluated to populate the brick pool with the distance field

data. Bounding boxes for the raytracing acceleration structure are also

constructed in this stage.

 16

Initially it may seem like a structure that could be partially

reconstructed would be ideal; for example, if an edit is applied that only

affects one octant of the object, then only that octant should be

reconstructed. This idea is applied in Claybook (Aaltonen, 2018). However,

as discussed, this is not practical with a compacted data structure.

Therefore, the structure implemented is rebuilt from scratch upon every

modification.

3.3.1 Top-Down Construction

A top-down approach to construction is taken, where the algorithm begins

at the coarsest level of bricks and iteratively refines until the desired brick

size is reached.

Performing construction this way has several advantages. For

example, larger regions of space can be culled from further evaluation. If a

brick is culled in an early iteration, then all space within that brick is never

required to be visited again. This allows for large areas of space to be

culled quickly and much larger and sparser objects to be feasible to

construct. An example of how an object is hierarchically refined is shown

in Figure 2.

Edit index buffers are also refined at each stage of construction,

which reduces the number of edits that must be evaluated in the brick

counting stage in the next iteration. As edit evaluation is generally the

bottleneck of construction, evaluating as few edits as possible is critical to

real-time performance. Edit index buffers are described further in section

3.3.2.

It also simplifies the process of ensuring that all bricks are sorted in

a spatially coherent order, which helps cache-coherence. If each brick sorts

its sub-bricks in a spatially coherent order in each iteration, then that is

enough to guarantee the entire buffer is sorted when brick building

completes. This allows all sorting to be performed within each compute

shader group –no global sorting stage is required.

 17

Figure 2: Two iterations of brick building.

However, there are also disadvantages to top-down construction.

These issues are overviewed by (Karras, 2012) and discussed in Chapter

2. As the highest levels of the hierarchy contain few bricks, parallelism is

severely limited in the first two iterations of construction. The first iteration

will only contain 64 bricks – which is far from enough to fill the GPU with

work. The second iteration can contain up to 4096 bricks, which is still not

enough to fully occupy the GPU. However, as the tree is wide, the number

of bricks can increase by up to a factor of 64 each iteration. By the third

iteration this issue dissipates. This issue would be more pronounced with

a narrower tree, such as an octree, where the number of bricks grows

slower with each iteration.

3.3.2 Edit Dependencies

Generally, not every distance sample within the object will be

affected by every edit. To allow for efficient evaluation of the distance field,

the minimum number of edits should be evaluated for every sample.

However, maintaining edit relevancy data on a per-sample basis would

require significantly greater memory overhead and increase thread

divergence. Therefore, edits are culled at a per-brick granularity. This

allows all threads in a group to co-operate to build relevancy data for each

brick and reduces divergence within a group during evaluation, as every

thread will evaluate the same edits in lockstep.

 18

The indices of all edits relevant to a brick are stored. Only one index

buffer is allocated for each SDF object, and each brick sub-allocates from

this buffer. In the artefact, it was defined that edits lists may contain up to

a maximum of 1024 edits. This allows for 16 bits to be used per index. The

full construction of index buffers is described in section 3.3.6.

To ensure index buffers are constructed correctly, dependencies

between edits must be identified. As the edit list is the same for all bricks,

edit dependencies can be computed a single time prior to brick

construction, and re-used throughout each iteration of brick building.

An edit dependency occurs if any edit in the list will influence the effect of

a subsequent edit. This is only relevant when using smooth edits – where

an edit could produce different geometry depending on the preceding edits

and amount of blending. To be able to correctly cull smooth edits, a precise

analysis of edit dependencies is required.

A smooth edit is dependent on a preceding edit if their ranges of

influence overlap – where the range of influence is the boundary of the edit

inflated by its smooth blending radius. To make this calculable, the smooth-

minimum function with a fixed radius as used by (Evans, 2015) was utilized.

Determining the intersection of two signed distance function primitives is

not trivial, so a simplification where conservative bounding spheres were

used for all primitives in this artefact. This is a poor approximation in many

cases, but correct geometry will still be produced at the expense of more

edits being evaluated than necessary. A more thorough implementation of

signed distance function intersection detection would improve the

efficiency of edit culling.

An example is shown in Figure 3, where the boundary of one brick

is displayed, as well as 3 edits and their ranges of influence. The edits are

enumerated in the order they appear in the edit list. In this example, it is

obvious that the red edit is relevant to the brick. The purple edit is also

relevant, as its range of influence extends within the brick and therefore

can affect the geometry within. While neither the green edit nor its range of

influence is within the brick, as its range of influence overlaps with the red

edit’s range of influence, it is determined to be dependent on red and

therefore is also relevant to the brick. Yellow is not involved in any

 19

dependencies nor intersects the brick in any way and can therefore be

culled.

Figure 3: An example of identifying edit dependencies and selecting relevant edits for a brick.
Edits 1, 2, and 3 would be selected and edit 4 culled.

Each thread in a compute shader dispatch is assigned a pair of edits

to process. By dispatching a linear array of threads, and by using the

largest triangular number less than the thread’s index, a unique edit pair

for each thread can be identified. In this scenario, work is balanced

between threads helping to maximise occupancy.

If edit A is a smooth edit, the thread will check if it overlaps with edit

B. If so, the index of edit B is inserted into edit A’s dependency list. If edit

B is also a smooth edit, then the index of edit A is also insert into edit B’s

dependency list. Due to the implementation of the edit culling algorithm,

dependencies can be inserted in any order.

The dependency buffer could be compacted once it has been

populated. It could be investigated if the time spent compacting the buffer

results in a net reduction in construction time due to improved data locality

in the dependency buffer.

3.3.3 Brick Counting

A compact buffer of bricks is maintained throughout the construction

process. This is done to avoid the need for excessively large intermediate

buffers. To achieve this, the first step in each iteration is to determine the

 20

quantity of sub-bricks each brick will be divided into. This is done by

evaluating the edit list for each potential sub-brick to determine if it will be

intersected by the surface. Only edits referenced by the parent brick’s index

buffer need be evaluated. Every sub-brick intersected by the surface is

marked as such using a bitmask within the parent brick. This allows the

sub-bricks that require construction in the brick building stage (section

3.3.5) to be recovered without re-evaluating the edit list. The sub-bricks

cannot be constructed immediately as the indices at which they will be

placed into the buffer need to be calculated first.

As each group processes a single brick, and a brick can be split into

64 sub-bricks, each group consists of 43 threads. Consequently, bricks will

quarter in size with every iteration. The total number of sub-bricks that will

be produced from a parent brick is recorded using a group-shared atomic

counter. Once the sub-bricks have been counted, the final count is stored

in global memory to allow the final indices of each sub-brick to be

calculated in the next stage.

3.3.4 Scanning

The indices of all sub-bricks to be constructed can be calculated by

performing a prefix sum, or scan, of the sub-brick counts for all bricks.

Many implementations of prefix sum suitable for a GPU have been

developed, and the implementation described by (Harada & Howes, no

date) was followed.

Multiple stages of scanning are required. First, each group of 64

threads will perform a scan. Then, the output from the first stage will also

be scanned by a subsequent dispatch of 64 threads. Then, the result from

each stage is summed to produce a final index offset per brick. In cases of

more than 262,144 bricks, two stages of scanning will be insufficient for the

second scan to fit within a single group. In this instance multiple sums are

performed in the summing stage, resulting in one additional load from the

scan buffer for every 262,144 bricks constructed. A better solution would

have been to allow for each thread to locally scan more than one value.

 21

3.3.5 Brick Building

With the final location for each brick within the output buffer now

determined, the sub-bricks can be constructed and placed into the buffer.

The location of the sub-brick can be determined from its index within its

parent. Before the sub-bricks are placed in the output buffer, they are

sorted by their Morton codes to ensure that the brick buffer remains

spatially coherent. As construction is performed one level at a time, the

entire buffer of bricks can be guaranteed to be sorted simply through

sorting within each group in each iteration.

Figure 4: Spatial coherence of the bricks. Hue increases with index into the buffer.

An enumeration sort is utilized, as there can only be a maximum of

64 sub-bricks. This again takes advantage of the 1:1 mapping between

threads and sub-bricks, where each thread calculates the sorted index of

one brick. Once sub-bricks are sorted within a group, they are placed into

the global buffer of bricks with respect to the group-local order, allowing the

global buffer to remain both compact and spatially coherent. The

visualization in Figure 4 shows that nearby bricks have similar hues and

are therefore located nearby in the brick buffer. This is advantageous for

making effective use of the cache during rendering – as nearby threads will

likely access adjacent bricks, or a thread is likely to access a neighbouring

brick when exiting a brick if an intersection was not found. Furthermore, it

 22

is likely that bricks nearby in space will access similar edits, which is

beneficial for cache coherency during evaluation.

3.3.6 Edit Culling

Once new sub-bricks have been constructed, a new index buffer must be

constructed for each. This can be done by refining its parents index buffer.

As every sub-brick is entirely encapsulated by its parent, there will never

be an edit that can affect a sub-brick but not its parent.

There are two important considerations when constructing the index

buffer – firstly, indices must be sorted to produce the correct geometry. A

union followed by a subtraction will produce different geometry than the

subtraction followed by the union. Secondly, an index should not occur

more than once to avoid unnecessary work.

Both operations can be solved simultaneously with the use of a

bitfield. Every edit is assigned to a corresponding bit in the bitfield. For a

maximum of 1024 edits, this requires a bitfield 1024 bits wide, represented

by a 32-element array of 32-bit unsigned integers.

To determine if an edit should be culled or not, edits are evaluated

at the midpoint of the brick. If the evaluated distance is greater than the

brick size the edit can be culled. All relevant edits set their corresponding

bit in the bitmask. If an edit is smooth, then all its dependencies are

retrieved from the dependency buffer, and the corresponding bit of each

dependency is also set.

The index buffer will then be the indices of all the set bits within the

bitfield. A prefix sum can be performed to compact the bitfield, and then the

indices of the set bits can be written to the global index buffer. Indices are

guaranteed to be both unique and in ascending order.

The effect of edit culling is displayed in Figure 5. It can also be seen

how smooth blending can dramatically increase the number of edit

evaluations per sample.

 23

Figure 5: Edit count per voxel for 'Drops' for a blending radius of 0.2 and 0.5 respectively, where
green signifies 1 edit and red 16 edits or greater.

3.3.7 Brick Evaluation

The CPU must wait until hierarchical brick construction has completed prior

to commencing brick evaluation. This is because the final brick and index

counts are required to allocate brick pools and index buffers. This stall

could be avoided by allocating a brick pool large enough to contain the

worst-case scenario number of bricks. However, accommodating for the

worst-case scenario defeats the purpose of attempting to store the brick

compactly in a pool in the first place.

As resizing the brick pool is an infrequent occurrence, the stall could

also be avoided by simply continuing with brick evaluation and afterwards

it could be determined if the brick pool was large enough for brick

evaluation to be successful. If not, then a new brick pool can be allocated,

and construction restarted. Therefore, the stall will not be present in nearly

all constructions, however construction will be executed twice in cases

where the brick pool requires resizing.

Once the brick count has been determined and the pool has been

allocated, the distance field can be evaluated. To evaluate the distance

field, each brick is processed by one thread group. Each thread group

consist of 83 threads, and each thread will evaluate the edit list once to

obtain a single sample.

Evaluating simply involves iterating through the index buffer of the

brick and evaluating each edit at the thread’s corresponding location in

 24

space. The results from each edit are combined according to the CSG

operation of each edit, and the final distance value is stored in the brick

pool. The brick pool is formatted to contain 8-bit signed normalized values,

which gives a precision of 256 possible values per voxel. Distances stored

within the pool are mapped such that the maximum representable

magnitude of 1 corresponds to 4 voxels, allowing each voxel to encode a

range of [-4,4] voxels. Therefore, surfaces can be represented with a

precision of 1/32 of the brick size. A slice from the brick pool of the ‘Drops’

scene is displayed in Figure 6.

Figure 6: A cross-section from 'Drops' brick pool, with a magnified excerpt on the right.

To speed up evaluation, edits are first loaded into group-shared

memory. As the maximum number of 1024 edits would not fit in group-

shared memory at once, and since edits are evaluated independently, edits

are loaded into group-shared memory in chunks of 256 at a time. Using

larger chunks could limit occupancy due to the quantity of group-shared

memory required per group, and using smaller chunks could limit the

amount of parallelism achieved and result in more threads waiting at

barriers for sibling threads. Potential optimization of this value is discussed

but thorough evaluation can be considered for future work.

3.5 Testing and Evaluation

Testing was carried out to determine the feasibility of modifiable SDFs in a

real-time application. The focus of the testing is to investigate if the

implemented data structure and construction algorithm made effective use

 25

of the GPU to allow for an SDF-based representation of geometry that is

modifiable in real-time and scalable for the purpose of a game.

3.5.1 Method and Tools

NVIDIA Nsight Perk SDK was used to gather performance metrics. The

ranges of GPU work to profile were specified in the application source

code, and the application was launched in a profiling configuration to collect

the specified metrics from the GPU. The collected data was formatted and

output to a CSV file for further processing and analysis in Microsoft Excel.

Nsight Perf mitigates the overhead of metric collection by profiling nested

in ranges in isolation over multiple passes, such that no profiling operations

will be executed within a range that is being actively profiled.

The memory usage of each resource of the SDF object was measured, for

a brick size of 0.0625 world-space units. This includes the brick pool, the

brick buffer, the index buffer, the raytracing AABB buffer, and the raytracing

bottom-level acceleration structure (BLAS). Although the AABB buffer is a

transient resource and can be discarded once the acceleration structure is

constructed, in the case where objects are reconstructed each frame the

AABB buffer will instead be retained as a persistent resource. As such, its

memory usage is collected alongside that of the other resources.

Memory usage was measured separately from the performance

metrics for rendering and construction. The memory usage was measured

upon the first construction of the object, at timestamp t = 0s. This was done

as the brick pool will be allocated optimally to provide the tightest fit for the

number of bricks in the object, which may not remain true as the object

animates over time. Objects were constructed with edit culling enabled.

For texture resources, e.g. the brick pool, memory usage was measured

as the total size reported by the function listed in Figure 7.

ID3D12Device::GetCopyableFootprints(...);

Figure 7: The function used to obtain the memory consumption of the brick pool.

This provides a GPU-agnostic measure of the footprint of a

resource. For buffer resources, the memory usage was calculated directly

 26

as the number of elements within the buffer multiplied by the byte stride of

each element.

In the context of a game, visual artefacts are unacceptable. Aside from any

artistic considerations, the geometry must be technologically sound to

produce the desired geometry with no artefacts.

With any discretized data, the resolution should be befitting the rate

at which it will be sampled. In this case, this means that the bricks

composing an object should be small enough such that even with the

limited precision of the brick pool, the distance field produces a visibly

continuous surface when sampled at the resolution of the display. It may

also be the case that even small brick sizes do not correctly represent the

intended geometry accurately. Visual fidelity will be evaluated as how

closely the geometry constructed using bricks matches the same geometry

rendered analytically.

To evaluate visual fidelity, a simple scene was constructed

containing two spheres smooth blending together, referred to simply as the

‘Spheres’ scene henceforth. A ground-truth image of this scene was

obtained by rendering this geometry analytically, with no discretization of

the distance field. The ground-truth image is shown in Figure 8. The same

scene was then constructed from a discretized distance field built from

bricks 0.5, 0.25, 0.125, and 0.0625 world-space units in size. Through

comparing each brick size to the ground truth, any error in the surface

shape and surface normals can be identified.

By constructing the ‘Drops’ scene with and without edit culling, the

correct-ness of the edit culling algorithm can also be validated visually. The

surface shape and surface normals of the produced geometry should be

identical in both scenarios. The scene was rendered at identical

timestamps and identical viewpoints with and without edit culling to

produce two images. These images are compared to discern inaccuracies

in the edit culling algorithm.

 27

Figure 8: The ground-truth render of the ‘Spheres’ scene for evaluating fidelity.

3.5.2 Metrics

Different sets of metrics were collected for rendering and for construction

so that only relevant data is collected for each. The metrics collected, along

with justifications for the relevance of each metric, are displayed in Table 1

and Table 2.

Throughput is defined as the percentage of the maximum

achievable rate that data is processed for a specific hardware unit or

collection of units. Only metrics for the ALU and LSU hardware units are

included in the data as it was found that other the hardware units had

negligible usage by comparison and were not the bottleneck in any

circumstance.

Metric Reasoning

Duration (ns) To determine the latency of an operation or

workload.

Raytracing Core

Throughput (%)

To determine to what degree the raytracing

hardware is exploited.

SM Throughput (%) To give a general sense of how close

performance is to the theoretical maximum.

L2 Cache Hit Rate (%) To determine the application is using cache

coherent data access patterns.

Table 1: Metrics collected for rendering.

 28

Metric Reasoning

Duration (ns) To determine the latency of an operation or

workload.

CS Warp Activity (%) To measure occupancy – how well the

algorithm is managing to maximise the use of

GPU resources.

SM Throughput (%) To give a general sense of how close

performance is to the theoretical maximum.

L2 Cache Hit Rate (%) To determine the application is using cache

coherent data access patterns.

ALU & LSU

Throughput (%)

To determine which hardware unit is seeing

the most significant use.

CS Warp Launch Stall

Reason (%)

To determine what hardware resources are in

high contention.

Table 2: Metrics collected for construction.

3.5.3 Test Scenarios

Both construction and rendering were profiled on 4 different scenes named

Drops, Cubes, Rain, and Fractal. Screenshots of these scenes are

displayed in Figure 9. Each scene contained one object which had 1024,

216, 512, and 64 edits respectively. These scenes were designed to exhibit

a variety of edit counts, edit density, and edit complexity. For example,

Fractal only contains 64 edits – but these edits are individually expensive

to evaluate. Drops contains 1024 edits that frequently intersect with a

moderate amount of blending. Rain contains a variety of edit sizes and

densities. Finally, Cubes contains sparse structures, which is traditionally

a poorly performing scenario for sphere tracing.

Tests were performed on each scene for brick sizes of 0.5, 0.25,

0.125, and 0.0625 world-space units in size – where a smaller brick size

results in a larger number of bricks produced. Each scene was tested with

edit culling enabled and disabled. Therefore, the application was tested

under 32 different scenarios in total to investigate the effectiveness of the

data structure and construction algorithm.

 29

50 captures were taken for each brick size for each scene, and

mean values were calculated. For profiling rendering, one capture is

defined as a single time the scene was rendered via raytracing. For

profiling construction, one capture is defined as a single time an object was

constructed.

The scenes were rendered at a resolution of 3840px by 2160px. An

orbiting viewpoint centred on the object was used to remove any bias each

object may have for being rendered from a certain direction. Each scene

was rendered at a timestamp of t = 5 seconds for every capture, allowing

some warm-up time for each scene.

The final image simply displayed the world-space normal calculated

by each ray, and therefore rendering time does not include time spent

performing lighting calculations and shading. Only primary rays were used,

with a single ray cast per pixel.

Rendering and construction were profiled in separate sessions as

they are performed by separate GPU queues. Synchronous compute was

used in all tests to ensure the GPU was not splitting its resources between

work items.

Figure 9: The test scenes (in row-major order): Drops, Cubes, Rain, and Fractal.

 30

Chapter 4 Results

All tests were performed on an Intel 12th Gen Core i7-12700 CPU with

64GB of system RAM, with an NVIDIA GeForce RTX 3070 GPU with 8GB

GDDR6 dedicated VRAM using driver version 551.86.

Table 3 displays the number of edits composing each scene to

provide context to the statistics displayed in the figures below. When the

scenes were constructed with and without edit culling, different brick counts

were obtained. These sets of brick counts displayed in Table 4 and Table

5 for edit culling enabled and disabled respectively.

In all figures, both brick sizes and brick counts are plotted with

logarithmic axes for clarity as they increase exponentially.

Demo Edit Count

Cubes 216

Drops 1024

Fractal 64

Rain 512

Table 3: The number of edits composing each scene.

Demo Brick Size (World-space units)

0.0625 0.125 0.25 0.5

Cubes 176,422 53,620 12,491 2,693

Drops 362,731 79,248 19,083 4,043

Fractal 444,899 107,653 27,107 7,111

Rain 234,863 59,877 15,808 4,144

Table 4: The number of bricks composing each scene when edit culling is enabled, for each brick
size.

 31

Demo Brick Size (World-space units)

0.0625 0.125 0.25 0.5

Cubes 183,491 55,765 12,406 2,693

Drops 376,973 82,439 19,547 4,102

Fractal 444,894 107,750 27,107 7,201

Rain 238,107 60,666 15,934 4,160

Table 5: The number of bricks composing each scene when edit culling is disabled, for each brick
size.

4.1 Rendering

The mean time taken to perform raytracing of each scene for each brick

size and each brick count are presented in Figure 10 and Figure 11

respectively. Each scene was constructed with edit culling enabled.

Figure 12 presents the mean Raytracing Core throughput for each

scene and brick size. Constructed with edit culling enabled. Raytracing

Core refers to the hardware-accelerated raytracing units on the GPU.

The L2 Cache hit rate during rendering each scene at each brick

size is displayed in Figure 13. This is the percentage of VRAM accesses

that resulted in a cache hit from the L2 cache out of all VRAM accesses.

A comparison between raytracing times of each scene constructed

with edit culling enabled and disabled at a brick size of 0.0625 world-space

units is displayed in Figure 14.

Figure 10: Average time taken to raytrace each scene for each brick size.

0

2

4

6

8

10

12

0.03125 0.0625 0.125 0.25 0.5 1

Ti
m

e
(m

s)

Brick Size (world-space units)

Raytracing Duration vs Brick Size

Cubes Drops Fractal Rain

 32

Figure 11: Average time taken to raytrace each scene as brick count increases.

Figure 12: Average Raytracing Core Throughput for each brick size for each scene.

0

2

4

6

8

10

12

1 10 100 1000

Ti
m

e
(m

s)

Brick Count (Thousands)

Raytracing Duration vs Brick Count

Cubes Drops Fractal Rain

0

10

20

30

40

50

60

70

80

90

100

0.03125 0.0625 0.125 0.25 0.5 1

Th
ro

u
gh

p
u

t
(%

)

Brick Size (World-space units)

Raytracing Core Throughput

Cubes Drops Fractal Rain

 33

Figure 13: Average L2 cache hit rate for each scene for each brick size.

Figure 14: Average raytracing time for each scene with a brick size of 0.0625 with edit culling
enabled and disabled.

0

10

20

30

40

50

60

70

80

90

100

0.03125 0.0625 0.125 0.25 0.5 1

H
it

 R
at

e
(%

)

Brick Size (World-space units)

L2 Cache Hit Rate

Cubes Drops Fractal Rain

0

2

4

6

8

10

12

Cubes Drops Fractal Rain

Ti
m

e
(m

s)

Scene

Raytracing Time vs Edit Culling

Disabled Enabled

 34

4.2 Construction

The mean construction time for each scene for each brick size, with edit

culling enabled, is displayed in Figure 15. The mean construction time of

the same scenarios, but with edit culling disabled, is displayed in Figure

16. Power trendlines are displayed on both figures to show the trend as the

brick size increases. A direct comparison between construction times with

edit culling enabled and disabled is shown in Figure 17.

Figure 18 displays the proportion of total construction time

consumed by each stage, to establish an idea of the dominant stages in

construction. The contribution from evaluating edit dependencies and

AABB building is negligible in proportion and consequently these stages

are not easily discernible in the figure. The data shown in this figure was

taken from the Drops scene but found to be similar across the other scenes.

The mean Streaming Multiprocessor (SM) throughput for each

scene for each brick size with edit culling enabled and disabled is displayed

in Figure 19 and Figure 20 respectively. A streaming multiprocessor refers

to a group of computational units encapsulating all individual hardware

units; therefore, SM throughput is a general measure of instruction

throughput.

Figure 21 displays the mean occupancy for each stage in

construction, with edit culling enabled. Occupancy is defined to be the

percentage of warp slots across all SM’s actively executing instructions out

of all total warp slots available on the GPU. This data was taken from the

Drops scene.

Mean hardware unit usage during brick evaluation for each scene

for each brick size with edit culling enabled is displayed in Figure 22, to

illustrate the effect that the properties of the edits can have on the hardware

usage during construction of a scene. The graph is divided in two halves,

with the left-hand side displaying LSU throughput, and the right-hand side

displaying ALU throughput.

Figure 23 summarizes the reasons behind stalls in warp launches,

where a stall occurs when the schedular must wait for some resource to

become available before launching new warps. In general, the faster warps

 35

can be launched the greater the overall throughput of the GPU will be.

Warp launches may be stalled due to limited registers, limited CTA (Co-

operative Thread Array, NVIDIA terminology for a group) slots, limited warp

slots, limited group-shared memory, or limited barriers. Limited barriers

were not an issue at any point and therefore not shown in the figure. The

data plotted was taken from constructions with edit culling enabled.

Figure 15: Construction time for each scene for each brick size with edit culling enabled.

0

10

20

30

40

50

60

70

80

0.03125 0.0625 0.125 0.25 0.5 1

Ti
m

e
(m

s)

Brick Size (world-space units)

Construction Time - Edit Culling Enabled

Cubes Drops Fractal Rain

 36

Figure 16: Construction time for each scene for each brick size with edit culling disabled.

Figure 17: A direct comparison between construction times with edit culling enabled and disabled.

0

500

1000

1500

2000

2500

0.03125 0.0625 0.125 0.25 0.5 1

Ti
m

e
(m

s)

Brick Size (world-space units)

Construction Time Trend - Edit Culling Disabled

Cubes Drops Fractal Rain

0

500

1000

1500

2000

2500

0.0625 0.125 0.25 0.5 0.0625 0.125 0.25 0.5

Edit Culling Disabled Edit Culling Enabled

Ti
m

e
(m

s)

Brick Size (World-space units)

Edit Culling on Construction Time

Cubes Drops Fractal Rain

 37

Figure 18: The time taken by each construction stage, as a percentage of total construction time.

Figure 19: SM throughput as brick size increases for each scene, with edit culling enabled.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0625 0.125 0.25 0.5 0.0625 0.125 0.25 0.5

Edit Culling Disabled Edit Culling Enabled

Dominant Construction Stages

Drops Edit Dependencies Drops Brick Building

Drops AABB Building Drops Brick Evaluation

0

10

20

30

40

50

60

70

80

90

100

0.03125 0.0625 0.125 0.25 0.5 1

Th
ro

u
gh

p
u

t
(%

)

Brick Size (World-space units)

SM Throughput - Edit Culling Enabled

Cubes Drops Fractal Rain

 38

Figure 20: SM Throughput for each scene and each brick size, with edit culling disabled.

Figure 21: GPU Occupancy for each construction stage as brick size increases.

0

10

20

30

40

50

60

70

80

90

100

0.03125 0.0625 0.125 0.25 0.5 1

Th
ro

u
gh

p
u

t
(%

)

Brick Size (World-space units)

SM Throughput - Edit Culling Disabled

Cubes Drops Fractal Rain

0

10

20

30

40

50

60

70

80

90

100

0.03125 0.0625 0.125 0.25 0.5 1

O
cc

u
p

an
cy

 (
%

)

Brick Size (World-space units)

Construction Occupancy

Edit Dependencies Brick Building AABB Building Brick Evaluation

 39

Figure 22: Unit throughput during brick evaluation for the ALU and LSU for each scene and brick

size.

Figure 23: Warp Launch Stall Reason for each scene and brick size.

0

10

20

30

40

50

60

70

80

90

100

0.0625 0.125 0.25 0.5 0.0625 0.125 0.25 0.5

ALU LSU

Th
ro

u
gh

p
u

t
(%

)

Brick Size (World-space units)

Brick Evaluation - Hardware Unit Throughput

Cubes

Drops

Fractal

Rain

0

10

20

30

40

50

60

70

80

90

100

0
.0

6
2

5

0
.1

2
5

0
.2

5

0
.5

0
.0

6
2

5

0
.1

2
5

0
.2

5

0
.5

0
.0

6
2

5

0
.1

2
5

0
.2

5

0
.5

0
.0

6
2

5

0
.1

2
5

0
.2

5

0
.5

Register Alloc CTA Alloc GSM Alloc Warp Slot Alloc

W
ar

p
 L

au
n

ch
es

 S
ta

lle
d

 (
%

)

Brick Size (World-space units)

Warp Launch Stall Reason

Cubes Drops Fractal Rain

 40

4.3 Memory

The memory usage of each resource within an SDF object is displayed in

Table 6. The brick counts are also displayed for context.

Figure 24 shows the memory usage for each resource for each

scene. Memory usage is displayed in megabytes with a logarithmic scale.

Another visualization of the same data is shown in Figure 25, which

illustrates the proportion of the total memory consumption of each object

that each resource consumes.

Figure 26 plots memory usage, in megabytes, against the brick

count of the object. A linear trendline is also shown.

 Cubes Drops Fractal Rain

Brick Count 185,862 469,619 444,955 231,256

Brick Pool (MB) 210 475 463 240

Brick Buffer (MB) 10 25 24 12

AABB Buffer (MB) 9 21 20 11

Index Buffer (MB) 15 44 2 30

BLAS (MB) 21 54 51 27

Total (MB) 265 620 560 320

Table 6: Memory usage in MB of each resource for each scene.

Figure 24: Memory usage for each resource for each scene in MB.

1

10

100

1000

Brick Pool Brick Buffer AABB Buffer Index Buffer BLAS

M
em

o
ry

 U
sa

ge
 (

M
B

)

Resource

Memory Usage By Resource

Cubes Drops Fractal Rain

 41

Figure 25: Resource memory usage, displayed as a percentage of the object's total memory

usage.

Figure 26: Memory usage in MB by brick count.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cubes

Drops

Fractal

Rain

Memory Usage (% of total for object)

Sc
en

e

Memory Usage % By Resource

Brick Pool Brick Buffer AABB Buffer Index Buffer

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500

M
em

o
ry

 U
sa

ge
 (

M
B

)

Brick Count (Thousands)

Memory Usage By Brick Count

 42

4.4. Visual Fidelity

The Spheres scene was constructed from brick sizes 0.5, 0.25, 0.125, and

0.0625, and rendered from the same viewpoint. The results of each render

are displayed in Figure 27.

Each was then compared to the ground-truth render of the Spheres

scene, which was obtained by rendering an analytic representation of the

scene. The ground-truth render is displayed in Figure 8.

The difference between the scene rendered discretely and the

ground truth for each brick size is shown in Figure 28. In Figure 29, the

differences are greatly exaggerated to demonstrate for clarity, where the

noise in the surface normals can be seen. An example of how this noise

can affect an object once a shading model has been applied is shown in

Figure 30.

The correctness of the edit culling algorithm is also tested visually,

where the Drops scene was rendered with and without edit culling from an

identical viewpoint. These renders are displayed in Figure 31.

The error in the construction algorithm is therefore the difference

between these two renders, which is displayed in Figure 32, although the

differences are too small to be perceptible. The differences were

exaggerated and magnified by image processing software to produce

Figure 33, where small error in the edit culling algorithm can be identified.

Figure 27: The fidelity test scene rendered at brick sizes (left-to-right) 0.5, 0.25, 0.125, 0.0625.

 43

Figure 28: The difference between each fidelity test and the ground truth for brick sizes (left-to-

right) 0.5, 0.25, 0.125, 0.0625.

Figure 29: Figure 28 with highly exaggerated colours for clarity.

Figure 30: Noise can be seen in the surface normals. A series of magnifications are displayed on
the right.

Figure 31: The Drops scene rendered with edit culling (left) and without edit culling (right).

 44

Figure 32: Error in the edit culling algorithm. The differences are imperceptible when not

exaggerated artificially.

Figure 33: Error in the edit culling algorithm, greatly exaggerated and magnified to be perceptible.

 45

Chapter 5 Discussion

5.1 Results Analysis

5.1.1. Rendering Performance

It can be noted from Figure 10 and Figure 11 that the Fractal scene takes

considerably longer to ray-trace than all other test scenes at every brick

size. There are several contributing factors toward this that illustrate the

properties and challenges of both SDF rendering and raytracing in general.

It is shown in Table 3 that Fractal contains significantly more bricks than

the other scenes, although it will be discussed that this is not of significant

impact to the rendering performance. However, the type of geometry in the

Fractal scene is a typical poor case for sphere-tracing, where it contains

fine structures with gaps between geometry. This requires a greater

amount of sphere-tracing, as rays are more likely to intersect multiple

AABBs as they skim between the geometry.

Furthermore, as rays originate from the camera position and travel

in the camera’s point of view, raytracing is a view-dependent process. The

more rays that encounter geometry, the slower raytracing will be. In the

case of Fractal, the edits are large and consume a larger portion of the

screen than other scenes, and therefore more rays are likely to intersect.

This view-dependence is a source of bias that is not accounted for in this

study. It could be accounted for by measuring the total number of pixels

that are covered by geometry, and either weighting performance figures

accordingly to obtain an average performance per pixel, or by adjusting

scenes such that each scene has the same amount of screen coverage.

While the screen coverage is not consistent between scenes, it is

consistent between brick sizes so meaningful conclusions can still be

drawn about the rendering performance of this technology.

Either way, it is still important to acknowledge that the time taken to

raytrace the scene will increase as objects become closer and

consequently consume more screen space. This can be both an advantage

and disadvantage in a game scenario – it is appropriate for more rendering

time to be dedicated towards nearby objects than distant objects. However,

 46

in this case there is no gain in quality for the increased rendering time due

to the fixed resolution of the volume.

What is curious about the results is that raytracing time doesn’t increase

with brick count, as displayed by Figure 11. Indeed, the brick size that

resulted in the fastest ray-tracing times of Fractal was the smallest of

0.0625. It could be expected that a greater brick count would result in

slower acceleration structure traversal as there are simply more nodes

through which to traverse, but this does not seem to be the case. One

potential explanation could be that larger bricks will result in more empty

space within a brick, which means more sphere-tracing iterations are

required to reach the surface, and this negates any performance gains from

faster BVH traversal. However, the distances encoded within the bricks are

relative to the size of the brick and as such larger bricks will result in a

larger world-space distance being travelled with every sphere-tracing

iteration.

The reason is likely to be that roughly the same amount of screen

space is covered by bricks for all brick sizes, and therefore similar number

of rays intersect with bricks in the first place. Sphere-tracing in the

intersection shader is much more expensive than hardware BVH traversal

and is therefore the dominant factor affecting raytracing performance – so

increasing the number of AABB’s in the BVH does not significantly increase

the time taken to traverse the acceleration structure, while the amount of

sphere-tracing being performed is remaining relatively constant. Therefore,

it can be suggested that rendering the same object from the same

viewpoint will take similar times regardless of the brick size.

This is supported by Figure 12, which displays that raytracing core

throughput decreases with brick size. This suggests that more work is

being performed by the hardware raytracing units at smaller brick sizes,

even though similar frame times are achieved. This demonstrates that the

amount of time saved by faster BVH traversal at larger brick sizes is then

lost through having to do more sphere-tracing, as larger bricks are worse

approximations of the underlying SDF isosurface. This result is intuitive –

the two scenes that resemble the worst-case scenario for sphere-tracing,

 47

Fractal and Cubes, show the lowest RT Core throughput. From this result,

it can be suggested that more time is spent in the software intersection

shader, and this leads to the raytracing hardware to be leveraged to a

lesser extent.

As mentioned in the literature review, (Evans, 2015) stated that rasterizing

the bounding boxes of the bricks permitted the removal of any indirections

in the tight ray-marching loop, which helped to improve cache coherence.

It was anticipated that a similar result would be found in this artefact, as

building a unique raytracing AABB for each brick similarly permits ray

marching without indirection in the inner-most loop. However, it can be

observed from Figure 13 that the cache hit rate decreases as the brick size

decreases. It is speculated that this is due to higher contention for the

cache when there are more bricks. This could potentially be improved by

ordering the bricks within the brick pool along a Morton curve. While the

bricks in the buffer are in order of their Morton codes, the respective order

of the bricks in the pool is not. This would be a worthwhile optimization.

The difference in rendering times for objects constructed with and without

edit culling is miniscule. This is demonstrated in Figure 14. This suggests

that rendering time does not appear to correlate with the number of edits

from which an object is formed. This is as expected, and indeed the main

motivation behind discretizing the distance field in the first place.

5.1.2. Construction Performance

Figure 15 demonstrates that construction performs at a time complexity of

O(2n). This is to be expected; with each iteration of brick-building, the brick

count can multiply by up to a factor of 64. Quartering the brick size will

requires another iteration of brick-building, and the brick count will increase

exponentially. This makes selection of brick size critical for objects that will

be reconstructed frequently. Bricks that are too large will produce geometry

of too low a resolution and result in under-sampling during rendering.

However, choosing bricks that are too small, such that the distance field

precision is less than a single pixel, results in unnecessary work being

 48

performed during construction for no gain in fidelity. The brick size that

exactly matches the precision of the distance field to the screen resolution

would be ideal.

Perhaps the most significant finding of this research is the effectiveness of

the edit culling algorithm, demonstrated by Figure 17. At a brick size of

0.0625, the Drops scene takes multiple seconds to construct without edit

culling. This is significantly too slow for an interactive application. However,

enabling edit culling increased performance approximately by a factor of

32, with construction times of less than 100 milliseconds. As Drops

contains the greatest number of edits, it sees the most benefit from edit

culling. Nevertheless, all scenes saw significant gains in performance by

enabling edit culling. These findings suggest that real-time reconstruction

of SDF geometry would not be feasible without edit culling, and that

developing the edit culling technology further would increase the suitability

of this geometry representation to real-time interactive applications.

The difference in the trend displayed in Figure 15 and Figure 16 is also

critical – both cases still exhibit a time complexity of O(2n), but it can be

seen that the construction time increases at a much slower rate when edit

culling is enabled. It can further be noted that the scalability of the algorithm

differs for each scene. Drops can be determined to be the least scalable

as the brick size decreases, as it exhibits the steepest curve. Conversely,

Fractal appears to scale better as brick size decreases. In fact, the rate of

change of construction time with respect to the brick size is precisely in

order of which scenes contain the most edits. It seems that in general,

therefore, the more edits used to construct a scene, the less well the

construction of that scene will scale as the brick size decreases. This is

particularly important when considering how this technology will scale and

can advise the selection of an appropriate brick size.

It would be interesting to determine the scalability of constructing

objects with edits counts beyond 1024. 1024 is too low a limit to be able to

construct interesting game-quality assets. For example, assets in Dreams

(Evans, 2015) commonly consisted of tens of thousands of edits.

 49

It can be seen in Figure 18 that the brick evaluation duration grows at a

much faster rate than the brick building duration. Edit dependency

calculation and AABB construction are negligible by comparison. A

possible explanation for this is that brick evaluation will generally processes

a significantly greater number of bricks than brick building, up to a factor of

64 times more. It can thus be suggested that brick evaluation is the critical

stage in construction in terms of latency. This could be combatted through

the development of more precise edit culling solutions. It can also be seen

from Figure 18 that the proportion of time spent evaluating bricks is

significantly higher when edit culling is disabled. It can be suggested from

this that edit culling is effectively reducing the total amount of work to be

performed.

Edit culling in this artefact relies on approximately detecting

intersections using bounding spheres, which in many cases can result in

many more edits being evaluated per brick than in an optimal solution with

precise signed distance function intersection calculation. While improved

edit culling would decrease the time spent evaluating bricks, the number of

bricks will still grow exponentially as the brick size decreases.

Figure 19 shows that the Streaming Multiprocessor throughput, particularly

for brick building, is extremely poor for large brick sizes. As discussed in

section 3.3.1, early iterations of brick building will never be able to produce

enough work to fill the GPU. This is further evidenced by the results shown

in Figure 21, where brick building occupancy is particularly low at larger

brick sizes. Low occupancy in tree building algorithms is the motivation for

solutions like (Karras, 2012), where all levels of the tree can be constructed

simultaneously to fully exploit the parallelism of the GPU. Unfortunately,

this method cannot be used in this case as evaluating next level of bricks

depends on the preceding level. Evaluating the leaf bricks first would

require the entire edit list to be evaluated at every candidate space. The

iterative space and edit culling provided through top-down construction

would not be able to be used, and the resulting workload would not be

feasible for real-time construction.

 50

However, as shown by Figure 18 brick building only consumes the

minority of construction time. It is possible, therefore, that limited

occupancy in brick building is not a significant bottleneck compared to the

latency of brick evaluation.

Interestingly, Figure 20 shows that SM throughput is higher at larger

brick sizes when edit culling is disabled. This does not necessarily mean

improved performance; the lack of edit culling simply produces more work

to be done, which causes a higher SM throughput. It is shown in Figure 17

that doing less work in the first place is of lower latency than doing more

work at a higher throughput.

One interesting finding is that the properties of each scene are reflected

through the ALU and LSU hardware unit throughputs displayed in Figure

22. The Fractal scene is composed of only a few, but expensive, edits,

therefore it is anticipated that more time will be spent evaluating the

distance field versus loading edits from memory. Indeed, ALU throughput

is significantly higher than LSU throughput when constructing the Fractal

scene.

Conversely, the Drops scene has a much greater number of edits,

while each edit is faster to evaluate. This is once again reflected in the

results; ALU throughput is low, and LSU throughput is high. It can be

inferred that optimizing how edits are stored and loaded will see limited

performance gains in scenes such as Fractal. Ultimately, it may be the case

that it is largely hardware dependent – on a GPU that is bound by memory-

bandwidth, scenes composed of a lesser number of ALU-heavy edits would

be a preferable option.

The results in Figure 23 depict that group-shared memory is generally

highly contended for each scene. This is due to the amount of group-

shared memory allocated for temporary edit storage in brick evaluation.

Making use of group-shared memory during brick evaluation allows all

threads in a group to co-operate by loading edits together and evaluating

the same edits in lockstep. This greatly reduces the latency involved in

reading edit data. However, the number of edits loaded into group-shared

 51

memory at once is configurable. In all scenes tested, temporary group-

shared storage for up to 256 edits was allocated. This is excessive for a

scene like Fractal or Cubes, as the entire scene is composed of fewer than

256 edits. If available group-shared memory is the bottleneck for launching

warps, decreasing this value would allow for a greater number of warps to

be executed simultaneously and is therefore likely to decrease edit

evaluation latency.

However, not all threads will be able to contribute toward loading

edits if the temporary edit storage is less than 64 edits in size, as there will

be more threads than slots in the storage. This will result in threads sitting

idly at barriers waiting for siblings to load edits when more edits could have

been loaded from VRAM simultaneously.

The precise optimal value likely depends on the average number of

edits per brick. Despite Figure 23 suggesting that a lack of available GSM

is stalling warp launches, Figure 21 shows that near-maximum occupancy

is being maintained for brick evaluation at all brick sizes. It is possible,

therefore, that only minimal gains in performance will be seen through

optimizing this value.

5.1.3. Memory Usage

The optimal case for edit culling is where each brick will point to a single

edit, and consequently the index buffer will be as small as possible. The

Fractal scene is the closest scene to this optimum, as it contains only 64

well-distributed edits. As such, it is expected that each brick will reference

less than 10 edits. This is supported by the results shown in Figure 25.

Despite the Fractal having the second most bricks, its index buffer is much

smaller compared to all other scenes. By contrast, the Drops scene

contains the maximum of 1024 edits, each with a large amount of smooth

blending. As such, each brick will generally reference many edits. As

expected, a proportionally much larger index buffer is required for the

Drops scene despite it containing a similar number of bricks to the Fractal

scene.

Utilizing edit culling requires the memory overhead of storing an

index buffer, but evaluating objects built from hundreds of edits would be

 52

infeasible without an edit culling solution. Nevertheless, the index buffer for

all scenes is negligible in magnitude compared to the size of the brick pool.

The decrease in evaluation time is clearly worth the memory overhead of

an index buffer.

5.1.4. Visual Fidelity

It is important that any algorithm to construct geometry produces the

expected results. As such, the geometry produced by the construction

algorithm developed in this research was tested against a ground-truth

representation of the same geometry to discern any inconsistencies.

Error in the produced geometry can be seen in Figure 28. It can be seen

that geometry appears to become inflated at larger brick sizes. This is likely

an artefact of the limited precision of the representation in the brick pool.

At lower resolutions, the location of the isosurface can be determined less

precisely, leading to rays terminating sphere-tracing earlier and producing

an inflated surface. This inflation decreases as the brick size decreases,

and a sufficiently small brick size would be able to match the surface shape

precisely.

Through the artificially exaggerated visualization of the error

presented in Figure 29, noisy deviations in the surface normals can clearly

be identified. Unlike the inflation issue, this surface normal noise does not

dissipate as the brick size decreases. Instead, the frequency of the noise

increases as the brick size decreases, while its magnitude remains roughly

constant. It can thus be suggested that noise in the surface normals will be

present and visually discernible at all brick sizes, and this can be identified

as a limitation of the applicability of this representation of geometry within

a game context.

The accuracy of the surface normals is not only limited by the precision of

the brick pool or resolution of the object. Error in the normals is further

exacerbated as the 1-voxel neighbourhood surrounding bricks in the pool

is insufficient to allow proper normal sampling.

To perform central differencing, the SDF should be sampled 6 times

at 1-voxel offsets along the 3 primary axes from the point at which the

 53

normal is to be calculated. As sampling the SDF using linear filtering

requires an additional 1-voxel neighbourhood, therefore, calculating

normals with this method requires a 2-voxel neighbourhood. Consequently,

calculating the normals at the edge of a brick will cross the boundary into

the adjacent brick and result in an incorrect normal. This could be solved

by storing a 2-voxel neighbourhood around each brick. However, this would

dramatically increase the percentage of adjacency data of total brick data

to 78.4%.

To combat this, the offset for the central-differencing method was

decreased to a ½ voxel offset. This prevents the sampler from reading

across brick boundaries but exaggerates noise within the surface normals

due to the low precision of the volume. This can be seen in Figure 30.

One solution would be to instead, in the cases where bilinear sampling

would cross brick boundaries, point-sample the required brick and

manually interpolate. This will lead to a significant increase in divergent

texture accesses, but the required voxel will be correctly sampled.

However, this is very non-trivial to implement in the structure implemented

in this research, as compacting the brick array means brick indices can no

longer be inferred from 3D co-ordinates. Consequently, there is no simple

way to retrieve a texture co-ordinate within the brick pool from an arbitrary

point in space. A separate look-up table of Morton codes to brick indices

would need to be constructed and maintained. Nevertheless, even

sampling the correct voxels will still contain noise due to the limited

precision of the volume, so this would not entirely solve the issue.

An alternative solution is to use the analytical normal method

presented by (Evans, 2022), which provides normals that are continuous

across voxel boundaries but not quite true to the actual surface geometry.

Nevertheless, Evans found that the continuity is enough for it to be

aesthetically acceptable and the deviation from the true geometric normal

is small enough to be imperceptible.

In general, noise in the normals only presents itself most notably in

the specular reflections of highly smooth and reflective surfaces, such as

smooth metallic materials. The noise is much less pronounced for rougher

surfaces.

 54

5.2 Critical Evaluation

The fact that different brick counts were obtained when constructing

objects with and without edit culling, as shown in Table 4 and Table 5, could

suggest an inaccuracy in the edit culling algorithm that will produce

different geometry than expected. This is investigated in Figure 32, which

displays the difference between the Drops scene rendered with and without

edit culling. There does exist differences, which confirms that the edit

culling algorithm does not correctly cull edits in all cases. However, these

differences are imperceptible without the exaggeration and magnification

exerted in Figure 33. It is unclear if these imperfections are significant

enough to produce a perceptibly incorrect surface without magnification.

The difference in brick count between the scenes rendered with and

without edit culling is larger than the visual error in the edit culling algorithm

seen in Figure 33 would suggest. This could be explained by a limitation in

the evaluation methodology. Upon disabling edit culling, the scene was

reset and then progressed to timestamp t = 5s. Due to floating point

precision and variable frame time, the timestamp at which the scene was

measured with edit culling enabled and disabled could differ by a small

amount, causing the slight difference in brick count. Nevertheless, it is

unlikely that this had a marked effect on the construction performance.

It can be suggested that there is a trade-off to be made with selecting a

brick size to construct an object with. As stated previously, the most

expensive stage of construction is brick evaluation. The cost of evaluation

is largely dependent on the nature of the edits constituting the object. This

was the motivation behind implementing the edit culling scheme. An

implication of this is the possibility that decreasing the brick size can

improve the construction performance.

Regardless of the culling scheme, larger bricks are more likely to

intersect with a greater number of edits. This is especially true for edits

utilizing smooth blending. Conversely, it is likely that small bricks will

intersect fewer edits. With a good edit culling solution, these small bricks

will be very fast to evaluate. It can therefore be assumed that the quantity

 55

and properties of the edits should be considered when selecting the optimal

brick size to construct an object with.

Where large numbers of edits are clumped together in very close

proximity, the potential performance benefit of edit culling is diminished.

This is the worst-case scenario for construction. Thankfully, this is an

uncommon situation for game assets – it is less likely that a clump of edits

will be a natural way to construct a model.

However, this does motivate the concept of simplifying an edit list

prior to construction. It is possible for two edits to precisely cancel each

other out – a union followed by the subtraction of an identical edit will nullify

any effect that the union may have had. Therefore, the union could be

removed from the edit list without any affect to the resulting geometry.

Solving this issue programmatically is not trivial, and perhaps simply best

left as advice for end users to create performant geometry.

One of the issues that emerges from these findings is that the discretization

of the distance field is a slow process and challenging to perform at fast

enough rates to allow use within real-time. Furthermore, it is a waste of

time to evaluate a brick if a ray never intersects it. Therefore, a scheme

could be construed where only bricks that intersect with a ray are ever

evaluated.

This could be achieved through a deferred evaluation scheme. If a

ray intersects an AABB for which a brick has not yet been evaluated, then

it could inform the CPU of this, and that brick can be scheduled for

evaluation before the next render occurs. Therefore, bricks will be

evaluated in a view-informed manner, at the expense of a latency of at

least one frame. This works similar to the streaming technology in

Gigavoxels (Crassin, 2009).

The other option is to not perform brick evaluation at all and avoid

the discretization of the distance field outright. Instead, construction will

only produce the bricks and their index buffers. Upon ray-AABB

intersection, the analytical distance functions of the relevant edits can be

evaluated for each iteration of sphere-tracing. The results obtained in this

research showed that evaluation can be fast with good edit culling. In cases

 56

where the object is far away or obscured, it is speculated this method could

potentially be faster than evaluating the entire distance field, as only

samples that are required to be visited will be evaluated. However, in poor

cases where edit culling is not effective this method would likely become

prohibitively slow. Another advantage of this method is the resolution and

precision of the surface would no longer be bound by the discretization of

the volume. This would allow the resolution of the surface to adjust

dynamically to match the requirements of the viewpoint.

In this artefact, it was chosen that bricks would be 83 samples in size. This

was chosen mainly due to the convenient mapping between samples and

threads in a group but does not necessarily need to be so. (Crassin, 2009)

suggests an example implementation where bricks are 323 samples in size.

The effect of varying the brick resolution could be investigated.

Using higher resolution bricks, for example, 103 bricks (83 with a 1

voxel neighbourhood), could be implemented using a compute shader

containing 103 threads – within the maximum limit of 1024 threads in a

group. Alternatively, the thread group dimensions could also remain at 83,

where 488 of the 512 threads would evaluate two samples to populate a

103 brick. The effect on construction performance between the two thread

group sizes could be investigated to determine if the work imbalance in the

83-thread model has any impact. The effect on rendering performance and

visual fidelity could also be investigated. 103 bricks could also facilitate the

2-voxel neighbourhood required for correct surface normals as calculated

with the central-differencing method.

 57

Chapter 6 Conclusion and Future Work

6.1 Overview

This study set out to investigate the feasibility of SDF-based geometry that

can be modified in real-time within a game context. This was done by

implementing an application that can sparsely store SDF geometry as a

discrete distance field and render it via raytracing. The structure

implemented in this application was based on the previous work by

(Crassin, 2009), (Laine & Karras, 2010), and (Evans, 2022).

A construction algorithm was designed and implemented such that

this geometry could be reconstructed in real-time. This algorithm worked in

a top-down approach, iteratively refining bricks into sub-bricks. Edit culling

optimizations were implemented into the construction pipeline to make it

suitable for real-time performance.

This study has demonstrated the feasibility of using modifiable SDF

objects in a real-time application. The construction algorithm could create

objects composed of hundreds of primitive edits and hundreds of

thousands of bricks at interactive framerates. Crucially, the edit culling

algorithm implemented into the construction pipeline reduced construction

times from multiple seconds to within 100ms. Through reconstructing each

frame, the objects can be animated and dynamic, which was either not

possible or documented in previous work. The construction algorithm was

designed to make effective use of the GPU hardware. This was achieved

in parts; at smaller brick sizes, SM throughput reached as high as 80%,

and brick evaluation saw occupancy of over 95%. Hierarchical brick

building only achieved a maximum occupancy of approximately 30%, so

further optimizations are worthwhile.

The study has also shown that rendering SDF objects using a

combination of hardware-accelerated raytracing and software sphere-

tracing was sufficiently fast for real-time use. An interesting finding was that

the time taken to render an object was not proportional to the number of

bricks of which it was composed.

A limitation in this study is that correct surface normals were not able

to be obtained numerically at any brick size. Increasing the resolution of

 58

the object increased the frequency of the noise in the surface normals but

did not reduce its visual prevalence. This is exacerbated by a lack of

neighbourhood information within each brick, which limits the sampling

offset and contributes to the visually displeasing noise in the surface

normals. This noise produces perceptibly incorrect specular lighting and

reflections from secondary rays and limits the use of this technology in a

game context, where artefact-free rendering is extremely important.

While the study found that rendering time scales well with the

number of bricks composing a scene, significantly improved edit culling

would be required to make this technology useful for a game to allow for

objects composed of a significantly greater number of edits. The culling

technique in this application is a promising proof-of-concept that is effective

for a project of this scale, and it has scope for future optimization for more

widespread use.

6.2 Future Work

Further research might explore a precise optimization of brick size. For

example, for an object to be constructed from a specific edit list and

rendered from a specific viewpoint, there must exist an optimal brick size

that would allow for the fastest construction time, while not compromising

on the visual fidelity of the object. The fastest construction time will be some

optimization between constructing as few bricks as possible, while also

evaluating as few edits per brick as possible. This is unlikely to be generally

trivial to identify, as many factors affect construction time, including the

amount of smooth blending used within edits, and the complexity to

evaluate each individual edit.

This could motivate future research to investigate the possibility and

usefulness of a level-of-detail scheme, similar to the idea implemented in

Gigavoxels. LOD systems are prevalent in games, for both improving visual

fidelity and performance. However, maintaining multiple levels of detail for

an SDF object will come with significant construction overhead. As shown

in this study, rendering time does not correlate with brick size, and

consequently LOD schemes may not improve rendering times either. The

implementation and evaluation of such a scheme into the technology

 59

presented in this study would be beneficial to further understanding the

application of this technology within a game context.

Another potential direction for future research to tackle level-of-

detail would be to investigate the possibility of on-the-fly edit evaluation, as

mentioned in section 5.2, removing the need for a brick pool and the

discretization of the distance field. This would likely require the

investigation of highly improved edit culling schemes to be feasible for the

real-time rendering of objects composed of many edits.

Future studies could also investigate to which degree the analytical

intersection method proposed by (Evans, 2022) affects the time taken to

render SDF objects and investigate if their method of calculating surface

normals analytically improves the fidelity issues present in this study to

make this technology suitable for a game.

Finally, future research might further explore how shading attributes

for the geometry may be integrated into the technology presented in this

study. Whether building photorealistic environments or stylised worlds,

materials and shading models are critical to bring the geometry used in a

virtual environment to life. Using a discrete distance field allows for the

storage of attributes per voxel, which is generally much finer-grained than

per-vertex as would be in a triangle mesh. This could be taken advantage

of to produce highly detailed geometry. A future investigation could

determine the methods, advantages, and limitations of storing shading

attributes at a per-voxel basis.

 60

References

Aaltonen, S. (2018) ‘GPU-based clay simulation and ray tracing tech in

Claybook’ Game Developers Conference. Available at: https://ubm-

twvideo01.s3.amazonaws.com/o1/vault/gdc2018/presentations/Aaltonen_

Sebastian_GPU_Based_Clay.pdf (Accessed: September 2023).

Aeva (2022) A Better Approach to SDF Decomposition. Available at:

http://zone.dog/braindump/sdf_clustering_part_2/ (Accessed: February

2024).

Crassin, C. et al. (2009) ‘Gigavoxels’, Proceedings of the 2009

symposium on Interactive 3D graphics and games. Available at:

https://dl.acm.org/doi/10.1145/1507149.1507152 (Accessed: September

2023).

Evans, A. (2015) ‘Learning from failure: A survey of promising,

unconventional and mostly abandoned renderers for Dreams PS4, a

geometrically dense, painterly UGC game’, Advances in Real-Time

Rendering in Games, SIGGRAPH Course. Available at:

http://advances.realtimerendering.com/s2015/AlexEvans_SIGGRAPH-

2015-sml.pdf (Accessed: September 2023).

Evans, A., et al. (2022) ‘Ray Tracing of Signed Distance Function Grids’,

Journal of Computer Graphics Techniques, Volume 11. Available at:

https://jcgt.org/published/0011/03/06/paper-lowres.pdf (Accessed:

October 2023).

Harada, T. and Howes, L. (no date) Introduction to GPU Radix Sort, AMD

GPUOpen. Available at:

https://gpuopen.com/download/publications/Introduction_to_GPU_Radix_

Sort.pdf (Accessed: January 2024).

 61

Hart, J.C. (1996) ‘Sphere tracing: A geometric method for the antialiased

ray tracing of implicit surfaces’, The Visual Computer, 12(10), pp. 527–

545. doi:10.1007/s003710050084.

Karras, T. (2012) ‘Maximizing Parallelism in the Construction of BVHs,

Octrees, and k-d Trees’, EGGH-HPG’12: Proceedings of the Fourth ACM

SIGGRAPH / Eurographics conference on High-Performance Graphics.

Available at: https://dl.acm.org/doi/pdf/10.5555/2383795.2383801

(Accessed: October 2023).

Kramer, L. (2023) Real-time Sparse Distance Fields for Games, AMD

GPUOpen. Available at: https://gpuopen.com/gdc-

presentations/2023/GDC-2023-Sparse-Distance-Fields-For-Games.pdf

(Accessed: March 2024).

Laine, S. and Karras, T. (2010) ‘Efficient Sparse Voxel Octrees’,

Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D

Graphics and Games. Available at:

https://dl.acm.org/doi/pdf/10.1145/1730804.1730814 (Accessed:

September 2023).

Quilez, I. (no date) Distance Functions, Inigo Quilez. Available at:

https://iquilezles.org/articles/distfunctions/ (Accessed: September 2023).

Quilez, I. (no date) Numerical Normals for SDFs, Inigo Quilez. Available

at: https://iquilezles.org/articles/normalsSDF/ (Accessed: September

2023).

Quilez, I. (no date) Shadertoy. Available at: https://www.shadertoy.com/

(Accessed: April 2024).

Tatarchuk, N. (2005) Practical Dynamic Parallax Occlusion Mapping.

Available at: https://www.gamedevs.org/uploads/practical-dynamic-

parallax-occlusion-mapping.pdf (Accessed: April 2024).

 62

Appendices

Appendix 1 – Rendering Complete Data

L2 H
it Rate (%

)

SM
 Throughput (%

)

RT Throughput (%
)

D
uration (ns)

Edit C
ount

Brick C
ount

Brick Size

Edit C
ulling

D
em

o N
am

e

72

37

38

4247117

216

183334

0.0625

D
isabled

C
ubes

79

39

43

4255498

216

55760

0.125

D
isabled

C
ubes

84

38

51

3616082

216

12407

0.25

D
isabled

C
ubes

88

38

54

3570515

216

2693

0.5

D
isabled

C
ubes

73

40

45

3712694

1024

377049

0.0625

D
isabled

D
rops

81

39

53

3048901

1024

82477

0.125

D
isabled

D
rops

85

37

56

3058448

1024

19556

0.25

D
isabled

D
rops

86

37

57

3289123

1024

4100

0.5

D
isabled

D
rops

73

39

34

9418325

64

444780

0.0625

D
isabled

Fractal

81

40

42

8404724

64

107746

0.125

D
isabled

Fractal

 63

86

39

47

8434266

64

27104

0.25

D
isabled

Fractal

88

36

50

9480483

64

7221

0.5

D
isabled

Fractal

65

37

41

3205068

512

238135

0.0625

D
isabled

Rain

83

38

51

2730344

512

60702

0.125

D
isabled

Rain

84

38

56

2685439

512

15938

0.25

D
isabled

Rain

86

35

57

3025711

512

4162

0.5

D
isabled

Rain

71

36

38

4116628

216

176438

0.0625

Enabled

C
ubes

79

39

44

4123380

216

53549

0.125

Enabled

C
ubes

84

39

51

3670040

216

12493

0.25

Enabled

C
ubes

88

38

54

3496113

216

2693

0.5

Enabled

C
ubes

73

39

45

3764208

1024

362797

0.0625

Enabled

D
rops

81

38

52

3073218

1024

79221

0.125

Enabled

D
rops

85

36

56

3091858

1024

19084

0.25

Enabled

D
rops

 64

87

35

57

3301086

1024

4042

0.5

Enabled

D
rops

73

38

34

9535619

64

444894

0.0625

Enabled

Fractal

81

39

42

8458571

64

107629

0.125

Enabled

Fractal

86

38

47

8496175

64

27118

0.25

Enabled

Fractal

88

36

50

9372416

64

7113

0.5

Enabled

Fractal

63

35

40

3248176

512

234905

0.0625

Enabled

Rain

84

38

51

2698566

512

59884

0.125

Enabled

Rain

85

37

56

2701376

512

15806

0.25

Enabled

Rain

87

35

57

3063871

512

4148

0.5

Enabled

Rain

 65

Appendix 2 – Construction Complete Data

Stall (W
arp Slot) (%

)

Stall (G
SM

) (%
)

Stall (C
TA) (%

)

Stall (Register) (%
)

LSU
 Throughput (%

)

ALU
 Throughput (%

)

SM
 Throughput (%

)

W
arp Activity (%

)

D
uration (ns)

Edit C
ount

Brick C
ount

Range

Brick Size

Edit C
ulling

Scene

34 0

48 0 6 1 6

66

26391

216

183491

AABB Building

0.0625

D
isabled

C
ubes

0 0

94 0

78

43

78

52

4474297

216

183491

Brick Building

0.0625

D
isabled

C
ubes

50

50

31

50

45

53

93

99

329974237

216

183491

Brick Evaluation

0.0625

D
isabled

C
ubes

0 0

20 0

13 3

13

14

4473

216

183491

Edit D
ependencies

0.0625

D
isabled

C
ubes

17 0

48 0

10 1

10

20

5297

216

55765

AABB Building

0.125

D
isabled

C
ubes

1 0

87 0

66

35

66

40

1308855

216

55765

Brick Building

0.125

D
isabled

C
ubes

50

50

41

50

45

53

93

99

100329221

216

55765

Brick Evaluation

0.125

D
isabled

C
ubes

 66

0 0

20 0

13 3

13

14

4465

216

55765

Edit D
ependencies

0.125

D
isabled

C
ubes

23 0

48 0 3 0 3 4

3730

216

12406

AABB Building

0.25

D
isabled

C
ubes

1 0

85 0

47

25

47

23

394254

216

12406

Brick Building

0.25

D
isabled

C
ubes

50

50

48

50

45

53

93

98

22343000

216

12406

Brick Evaluation

0.25

D
isabled

C
ubes

0 0

20 0

13 3

13

14

4472

216

12406

Edit D
ependencies

0.25

D
isabled

C
ubes

24 0

48 0 1 0 1 1

3382

216

2693

AABB Building

0.5

D
isabled

C
ubes

2 0

85 0

17 9

17 7

261404

216

2693

Brick Building

0.5

D
isabled

C
ubes

48

48

47

48

45

53

92

97

4893194

216

2693

Brick Evaluation

0.5

D
isabled

C
ubes

 67

0 0

20 0

13 3

13

14

4472

216

2693

Edit D
ependencies

0.5

D
isabled

C
ubes

40 0

48 0 7 1 7

74

51097

1024

376973

AABB Building

0.0625

D
isabled

D
rops

0 0

93 0

86

30

86

58

21399241

1024

376973

Brick Building

0.0625

D
isabled

D
rops

50

50 5

50

62

41

94

100

2315382964

1024

376973

Brick Evaluation

0.0625

D
isabled

D
rops

0 0

36 0

52

15

52

50

24457

1024

376973

Edit D
ependencies

0.0625

D
isabled

D
rops

16 0

47 0 7 1 7

39

10390

1024

82439

AABB Building

0.125

D
isabled

D
rops

0 0

91 0

76

26

76

49

5312269

1024

82439

Brick Building

0.125

D
isabled

D
rops

50

50

24

50

62

41

94

100

506529378

1024

82439

Brick Evaluation

0.125

D
isabled

D
rops

 68

0 0

36 0

52

15

52

50

24463

1024

82439

Edit D
ependencies

0.125

D
isabled

D
rops

22 0

48 0 5 1 5 7

3927

1024

19547

AABB Building

0.25

D
isabled

D
rops

0 0

78 0

49

17

49

31

1879615

1024

19547

Brick Building

0.25

D
isabled

D
rops

50

50

41

50

62

41

94

100

120139739

1024

19547

Brick Evaluation

0.25

D
isabled

D
rops

0 0

36 0

52

15

52

50

24460

1024

19547

Edit D
ependencies

0.25

D
isabled

D
rops

24 0

48 0 1 0 1 1

3413

1024

4102

AABB Building

0.5

D
isabled

D
rops

1 0

89 0

30

10

30

14

980945

1024

4102

Brick Building

0.5

D
isabled

D
rops

49

49

46

49

62

40

93

98

25470425

1024

4102

Brick Evaluation

0.5

D
isabled

D
rops

 69

0 0

36 0

52

15

52

50

24450

1024

4102

Edit D
ependencies

0.5

D
isabled

D
rops

41 0

48 0 7 1 7

75

59736

64

444894

AABB Building

0.0625

D
isabled

Fractal

0 0

94 0

26

53

80

58

12713893

64

444894

Brick Building

0.0625

D
isabled

Fractal

50

50

10

50 9

59

85

99

1200446628

64

444894

Brick Evaluation

0.0625

D
isabled

Fractal

0 0

15 0 1 0 1 1

2291

64

444894

Edit D
ependencies

0.0625

D
isabled

Fractal

15 0

47 0 9 1 9

34

10665

64

107750

AABB Building

0.125

D
isabled

Fractal

0 0

92 0

24

51

77

53

3461068

64

107750

Brick Building

0.125

D
isabled

Fractal

50

50

34

50 9

59

85

99

290778378

64

107750

Brick Evaluation

0.125

D
isabled

Fractal

 70

0 0

15 0 1 0 1 1

2295

64

107750

Edit D
ependencies

0.125

D
isabled

Fractal

21 0

47 0 6 1 6 9

4156

64

27107

AABB Building

0.25

D
isabled

Fractal

1 0

84 0

22

47

70

45

943426

64

27107

Brick Building

0.25

D
isabled

Fractal

50

50

44

50 9

59

85

99

73215723

64

27107

Brick Evaluation

0.25

D
isabled

Fractal

0 0

15 0 1 0 1 1

2296

64

27107

Edit D
ependencies

0.25

D
isabled

Fractal

23 0

48 0 2 0 2 2

3561

64

7201

AABB Building

0.5

D
isabled

Fractal

2 0

79 0

15

32

48

19

352392

64

7201

Brick Building

0.5

D
isabled

Fractal

49

49

47

49 9

59

85

99

19493626

64

7201

Brick Evaluation

0.5

D
isabled

Fractal

 71

0 0

15 0 1 0 1 1

2296

64

7201

Edit D
ependencies

0.5

D
isabled

Fractal

36 0

48 0 7 1 7

70

33196

512

238107

AABB Building

0.0625

D
isabled

Rain

0 0

94 0

85

30

85

54

9853100

512

238107

Brick Building

0.0625

D
isabled

Rain

50

50

17

50

62

41

94

99

731195061

512

238107

Brick Evaluation

0.0625

D
isabled

Rain

0 0

27 0

35 9

35

38

8792

512

238107

Edit D
ependencies

0.0625

D
isabled

Rain

14 0

50 0 8 1 8

23

7274

512

60666

AABB Building

0.125

D
isabled

Rain

0 0

90 0

76

27

76

47

2900822

512

60666

Brick Building

0.125

D
isabled

Rain

50

50

42

50

62

41

94

99

186327694

512

60666

Brick Evaluation

0.125

D
isabled

Rain

 72

0 0

27 0

35 9

35

38

8783

512

60666

Edit D
ependencies

0.125

D
isabled

Rain

22 0

48 0 4 1 4 5

3865

512

15934

AABB Building

0.25

D
isabled

Rain

1 0

78 0

48

17

48

29

1005368

512

15934

Brick Building

0.25

D
isabled

Rain

50

50

46

50

62

41

94

99

49028300

512

15934

Brick Evaluation

0.25

D
isabled

Rain

0 0

27 0

35 9

35

38

8797

512

15934

Edit D
ependencies

0.25

D
isabled

Rain

23 0

48 0 1 0 1 1

3447

512

4160

AABB Building

0.5

D
isabled

Rain

1 0

88 0

28

10

28

12

516496

512

4160

Brick Building

0.5

D
isabled

Rain

49

49

47

49

62

41

93

98

12881333

512

4160

Brick Evaluation

0.5

D
isabled

Rain

 73

0 0

27 0

35 9

35

38

8798

512

4160

Edit D
ependencies

0.5

D
isabled

Rain

34 0

48 0 6 1 6

66

25347

216

176422

AABB Building

0.0625

Enabled

C
ubes

0 0

92 0

73

35

73

35

1923743

216

176422

Brick Building

0.0625

Enabled

C
ubes

50

50

45

50

46

49

92

98

32465109

216

176422

Brick Evaluation

0.0625

Enabled

C
ubes

0 0

20 0

13 3

13

14

4465

216

176422

Edit D
ependencies

0.0625

Enabled

C
ubes

18 0

47 0

10 1

10

19

5153

216

53620

AABB Building

0.125

Enabled

C
ubes

1 0

85 0

56

26

56

25

726104

216

53620

Brick Building

0.125

Enabled

C
ubes

50

50

48

50

46

49

92

98

10569806

216

53620

Brick Evaluation

0.125

Enabled

C
ubes

 74

0 0

20 0

13 3

13

14

4452

216

53620

Edit D
ependencies

0.125

Enabled

C
ubes

23 0

47 0 3 0 3 4

3966

216

12491

AABB Building

0.25

Enabled

C
ubes

2 0

81 0

36

17

36

16

306172

216

12491

Brick Building

0.25

Enabled

C
ubes

49

49

48

49

46

49

92

98

2208836

216

12491

Brick Evaluation

0.25

Enabled

C
ubes

0 0

20 0

13 3

13

14

4458

216

12491

Edit D
ependencies

0.25

Enabled

C
ubes

23 0

48 0 1 0 1 1

3375

216

2693

AABB Building

0.5

Enabled

C
ubes

2 0

76 0

15 8

15 6

243107

216

2693

Brick Building

0.5

Enabled

C
ubes

47

47

48

47

45

48

89

95

476841

216

2693

Brick Evaluation

0.5

Enabled

C
ubes

 75

0 0

20 0

13 3

13

14

4461

216

2693

Edit D
ependencies

0.5

Enabled

C
ubes

40 0

48 0 7 1 7

74

49262

1024

362731

AABB Building

0.0625

Enabled

D
rops

0 0

92 0

67

28

67

34

4719206

1024

362731

Brick Building

0.0625

Enabled

D
rops

50

50

46

50

62

36

92

98

67220664

1024

362731

Brick Evaluation

0.0625

Enabled

D
rops

0 0

36 0

52

14

52

49

24359

1024

362731

Edit D
ependencies

0.0625

Enabled

D
rops

15 0

49 0 8 1 8

36

9549

1024

79248

AABB Building

0.125

Enabled

D
rops

1 0

85 0

46

19

46

23

1759300

1024

79248

Brick Building

0.125

Enabled

D
rops

50

50

47

50

62

36

93

98

16965098

1024

79248

Brick Evaluation

0.125

Enabled

D
rops

 76

0 0

36 0

52

14

52

49

24272

1024

79248

Edit D
ependencies

0.125

Enabled

D
rops

22 0

48 0 5 1 5 6

3893

1024

19083

AABB Building

0.25

Enabled

D
rops

1 0

82 0

25

10

25

16

1034644

1024

19083

Brick Building

0.25

Enabled

D
rops

50

50

48

50

62

36

92

98

4463041

1024

19083

Brick Evaluation

0.25

Enabled

D
rops

0 0

36 0

52

15

52

49

24195

1024

19083

Edit D
ependencies

0.25

Enabled

D
rops

23 0

47 0 1 0 1 1

3434

1024

4043

AABB Building

0.5

Enabled

D
rops

1 0

78 0

14 6

14 7

804910

1024

4043

Brick Building

0.5

Enabled

D
rops

49

49

48

49

61

35

91

97

1085517

1024

4043

Brick Evaluation

0.5

Enabled

D
rops

 77

0 0

36 0

52

14

52

49

24263

1024

4043

Edit D
ependencies

0.5

Enabled

D
rops

41 0

48 0 7 1 7

75

59801

64

444899

AABB Building

0.0625

Enabled

Fractal

0 0

91 0

58

43

67

34

3067383

64

444899

Brick Building

0.0625

Enabled

Fractal

49

49

46

49

19

59

79

98

24897335

64

444899

Brick Evaluation

0.0625

Enabled

Fractal

0 0

16 0 1 0 1 1

2295

64

444899

Edit D
ependencies

0.0625

Enabled

Fractal

16 0

49 0 9 1 9

35

10834

64

107653

AABB Building

0.125

Enabled

Fractal

1 0

89 0

50

38

60

29

877279

64

107653

Brick Building

0.125

Enabled

Fractal

49

49

48

49

19

59

79

97

6033314

64

107653

Brick Evaluation

0.125

Enabled

Fractal

 78

0 0

16 0 1 0 1 1

2287

64

107653

Edit D
ependencies

0.125

Enabled

Fractal

21 0

48 0 6 1 6 9

4139

64

27107

AABB Building

0.25

Enabled

Fractal

2 0

86 0

35

30

47

22

322590

64

27107

Brick Building

0.25

Enabled

Fractal

49

49

48

49

19

59

79

97

1527001

64

27107

Brick Evaluation

0.25

Enabled

Fractal

0 0

16 0 1 0 1 1

2290

64

27107

Edit D
ependencies

0.25

Enabled

Fractal

22 0

48 0 2 0 2 2

3563

64

7111

AABB Building

0.5

Enabled

Fractal

3 0

81 0

17

18

28

11

195892

64

7111

Brick Building

0.5

Enabled

Fractal

48

48

48

48

18

58

78

96

412924

64

7111

Brick Evaluation

0.5

Enabled

Fractal

 79

0 0

16 0 1 0 1 1

2293

64

7111

Edit D
ependencies

0.5

Enabled

Fractal

36 0

48 0 7 1 7

69

32828

512

234863

AABB Building

0.0625

Enabled

Rain

0 0

92 0

71

31

71

36

3341117

512

234863

Brick Building

0.0625

Enabled

Rain

50

50

45

50

62

35

93

98

53870618

512

234863

Brick Evaluation

0.0625

Enabled

Rain

0 0

27 0

35 9

35

38

8799

512

234863

Edit D
ependencies

0.0625

Enabled

Rain

14 0

51 0 8 1 8

23

7091

512

59877

AABB Building

0.125

Enabled

Rain

1 0

86 0

54

24

54

26

1186996

512

59877

Brick Building

0.125

Enabled

Rain

50

50

47

50

62

35

93

98

14406250

512

59877

Brick Evaluation

0.125

Enabled

Rain

 80

0 0

27 0

35 9

35

38

8784

512

59877

Edit D
ependencies

0.125

Enabled

Rain

23 0

48 0 4 1 4 5

3800

512

15808

AABB Building

0.25

Enabled

Rain

1 0

81 0

31

13

31

17

588333

512

15808

Brick Building

0.25

Enabled

Rain

49

49

47

49

62

35

92

98

4016043

512

15808

Brick Evaluation

0.25

Enabled

Rain

0 0

27 0

35 9

35

38

8772

512

15808

Edit D
ependencies

0.25

Enabled

Rain

23 0

51 0 1 0 1 1

3609

512

4144

AABB Building

0.5

Enabled

Rain

1 0

78 0

17 7

17 8

427444

512

4144

Brick Building

0.5

Enabled

Rain

48

48

48

48

61

34

91

96

1060615

512

4144

Brick Evaluation

0.5

Enabled

Rain

 81

0 0

27 0

35 9

35

38

8799

512

4144

Edit D
ependencies

0.5

Enabled

Rain

