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Abstract 

Signed distance fields (SDFs) are an implicit representation of geometry 

with a collection of useful properties, e.g., affinity for constructive solid 

geometry, and an intrinsic definition of interior versus exterior. They are 

useful for sculpting tools, deformable objects, fluids, and volumetric effects. 

These techniques can be challenging to perform with polygons. Until 

recently, the use of SDFs in real-time interactive applications has been 

limited due to performance and memory constraints. Several studies have 

documented how discrete SDFs can be rendered in real-time. However, 

the study of SDFs that are also modifiable in real-time has not been treated 

in depth. 

 

This study aims to implement a memory-efficient representation of SDF 

geometry that can be rendered and modified in real-time and evaluate the 

feasibility of using SDFs as a rendering primitive within games. 

 

A sparse implementation of SDFs was designed, and an application was 

developed with C++ and DirectX 12 to render SDFs using hardware-

accelerated raytracing and software sphere-tracing. A top-down 

construction algorithm was developed that hierarchically refines space and 

uses culling solutions to accelerate distance field evaluation.  

 

Results showed that scenes of hundreds of thousands of spatial primitives 

could be rendered in 2-10ms, and that this is scalable with the number of 

primitives. It also finds that efficiently culling primitive shapes is key for 

construction performance, where culling improved construction times from 

multiple seconds to under 100ms, often under 20ms. 

 

The study concludes that it is feasible to make use of modifiable SDFs in a 

real-time interactive application. With further work to reduce error in surface 

normals, this technology could be applied in a game context. Future 

research could also further improve culling solutions and integrate shading 

attributes into the SDF representation. 
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Chapter 1 Introduction 

Polygons have long been the staple representation of 3D geometry for 

graphical applications. They provide an efficient explicit description of 

planar surfaces, and graphics hardware has evolved to rasterize them very 

efficiently. However, they are not the only choice, and the more powerful 

general computation capabilities of modern hardware is allowing for the 

use of alternative representations of geometry to be explored. As one such 

alternative, signed distance functions provide a simple implicit 

representation of geometry and show interesting properties such as 

support for constructive solid geometry (CSG) operations, shape 

morphing, and an intrinsic definition of interior versus exterior, all of which 

are typically challenging to achieve with triangle geometry. Furthermore, 

unlike a discrete representation of geometry, signed distance functions are 

continuous and resolution independent. This representation is well suited 

for deformable surfaces, volumetric effects, and smooth organic shapes. 

As they can be rendered using a simple sphere-tracing algorithm (Hart 

1995), signed distance functions have seen extensive use through the 

computer graphics demo-scene for decades, where unique graphical 

effects not seen in games of the time were created with software such as 

Shadertoy (Quilez, no date). However, adoption in real-time graphics 

applications has been limited until recently. This is due to issues of scale. 

Dense scenes with many objects require many signed distance function 

evaluations, making real-time rendering of signed distance function-based 

scenes infeasible. 

To decouple rendering time from the number of primitives, an offline 

process can be performed where the signed-distance functions can be 

sampled regularly and stored in a grid – forming what is known as a signed 

distance field (SDF). Therefore, distance values from the distance field can 

be acquired in constant time with respect to the number of primitive signed 

distance functions. 

However, there are drawbacks and challenges with this volumetric 

representation of SDFs. Firstly, what before was a compact functional 

representation is now a 3D volume of samples that involves a significant 



 

   2 

memory overhead for large objects. Secondly, the resolution-independent 

continuous functional representation is sacrificed for the limited precision 

of discrete samples, where volumes of high resolution are required to 

create visually continuous geometry. Finally, functional representations 

allow the shape and resolution to be fully dynamic, as the functions must 

be re-evaluated every time the scene is rendered regardless. Indeed, this 

is what made signed distance functions so popular within the graphics 

demo-scene. Modification of the static volume data associated with an SDF 

is significantly more challenging. 

Many approaches to efficiently store a distance field in a discrete 

volume have been investigated. There have been various motivations and 

applications for this, e.g., interactively rendering medical scans (Crassin, 

2009), where a volume of data may contain billions of samples, and to 

create a unified representation of 3D geometry using voxels, to replace the 

requirement for high resolution displacement maps to bring detail to coarse 

triangle geometry (Laine & Karras, 2010). Dreams (Evans, 2015) is a 

groundbreaking example of using sparse volumes of distance fields in 

games. Using SDFs as its representation of geometry allows intuitive in-

game sculpting tools, which enhance the user-generated content 

experience. 

Notably, Claybook (Aaltonen, 2018) shows how a fully deformable 

world can be constructed from SDFs, and it is a strong example of how a 

game can benefit from using SDFs as a dynamic representation of 

geometry. However, Claybook does not make use of sparse volumes, and 

the entire world is effectively one single object which limits how its 

approach can be used for games in general. 

So far, there has been little discussion about how a modifiable and 

dynamic distance field can make use of a sparse and memory-efficient 

representation within the context of a game. 

This study researches the feasibility of real-time construction and rendering 

of signed distance field geometry and evaluate how it can be used as a 

real-time rendering primitive in games in general. 

It aims to efficiently represent SDF geometry with a sparse volume which 

can be rendered using raytracing. A construction algorithm is developed 
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that will allow the SDF geometry to be modifiable and interactive in real-

time. It is hoped that this representation of geometry can demonstrate the 

unique properties of SDFs, such that they could become more 

commonplace in games in the future. 

Chapter 2 will review relevant literature surrounding the 

development of sparse representations of SDFs that can be rendered 

efficiently and existing methods of constructing or modifying SDF geometry 

on the GPU. Chapter 3 will cover the implementation details of the 

technology developed in this research to represent, render, and 

reconstruct SDF geometry. The method used to evaluate the developed 

technology will also be discussed. The results obtained through testing are 

presented in Chapter 4, followed by a thorough discussion and analysis of 

these results in Chapter 5. Finally, conclusions on this research will be 

drawn in Chapter 6.  
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Chapter 2 Literature Review 

A variety of techniques have been investigated to approach rendering large 

SDFs in real time. The challenge associated with rendering volumetric data 

arises due to the vast quantity of data involved. The naive approach of 

visiting every sample along a ray, while precise, would be far too slow to 

be useful in a real-time application. An acceleration structure that can 

partition space is required, which allows for as few samples as possible to 

be visited. 

2.1 Acceleration Structures 

An example of such an acceleration structure is employed in Gigavoxels 

(Crassin, 2009), which proposes a novel out-of-core method to render 

extremely large volumetric data sets in real time. It implements a sparse 

tree structure where each node points to either a ‘brick’, an N3 block of 

distance data, or a constant value in the case of a homogenous region of 

space. Sibling nodes are stored adjacently so that children can be 

accessed through the pointer to the first child to reduce the amount of data 

to be stored per node. 

Bricks are stored separately from the nodes in a ‘brick pool’. Non-

leaf nodes also own bricks, which allows for mip-mapping when sampling 

the volume. This produces an inherently filtered and anti-aliased image 

when the volume is rendered, which is a very desirable attribute in the 

context of graphical applications such as games. 

The volume is rendered using raytracing and can optionally be 

encased in proxy geometry that is first rasterized. The node tree is 

descended using a kd-restart algorithm, to avoid the need for a stack, until 

the desired level of detail is reached. At this point, if the node contains a 

homogenous value, it is integrated along the length of the ray. Otherwise, 

the associated brick is fetched from the brick pool and is ray-marched to 

accumulate density along the ray. In the case of opaque geometry, 

traversal can be discontinued upon the first surface intersection. 

Gigavoxels also demonstrates a novel and advanced ray-guided 

streaming method, where the GPU efficiently feeds back to the CPU what 
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bricks were accessed, and which missing bricks are required to be loaded 

into the brick pool for the next frame.  

While out-of-core rendering is an essential concept for rendering 

vast voxel-based worlds, such as would likely be encountered in a game, 

it is outside the scope of this research.  

Using this method, volumes of size greater than the available video 

memory can be rendered at real-time framerates. This allows the size of 

the brick pool to be adjusted to match the available hardware capabilities 

– a smaller brick pool will consume less video memory at the expense of 

being able to store less bricks at a time. This sort of dynamic configuration 

is important in a game context, where a technology may need to adapt to 

various hardware specifications. Nevertheless, Gigavoxels demonstrates 

how large amounts of voxel data can be arranged and dynamically updated 

in a tree structure, which is an important idea for developing a structure 

that can support the modification of SDF objects. 

 

Efficient Sparse Voxel Octrees (Laine & Karras, 2010) is motivated by the 

idea that an efficient voxel-based representation of geometry can unify 

coarse geometry and fine detail. It investigates a memory-efficient 

representation of voxel data that is also fast to render using a raytracing 

algorithm. A compact data structure is presented, where each voxel is 

represented by a node in a sparse octree. Each node contains bitmasks 

from which the state of its children can be determined, and therefore the 

leaf voxels do not need to be stored directly. Nodes are also stored 

compactly, as the bitmasks also describe the spatial relation between a 

parent and each of its children. 

The concept of contours is also applied to aid rendering 

performance. Contours are two parallel planes which bound the surface 

within a voxel. Contours can be stored per-voxel and allow raytracing to be 

accelerated by providing a tighter-fitting bounding volume compared to 

simply using the voxel’s cubic bounding box. This allows a ray to visit less 

voxels when searching for an intersection. 
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Efficient SVO’s also tackle out-of-core rendering through splitting 

the tree structure into ‘blocks’ and using relative pointers within each block.  

Entire blocks can then be streamed in and out of memory as required.  

Traversing through the octree can be done efficiently, as the index of the 

next node to visit can be found by flipping bits of the current node index, 

depending on the ray direction. A stack of indices is maintained that fully 

describes the path from the root of the tree to the current node. 

Laine & Karras demonstrate that an Efficient Sparse Voxel Octree 

is an effective method of compactly storing geometry within a game context 

and state that their implementation is compact and efficient. However, this 

is under the assumption of static geometry. Therefore, Efficient SVO’s 

present useful ideas for the compact storage of voxel data but do not 

provide a method to efficient construct or modify the structure that takes 

advantage of the massive parallelism offered by the GPU. The additional 

overhead of calculating contours for each voxel is additional sacrifice to 

construction speed in favour of rendering speed, again making this 

representation better suited to static geometry. 

 

Traditionally, as with Efficient Sparse Voxel Octrees and Gigavoxels, tree 

structures would be constructed iteratively one level at a time. Maintaining 

a compact and memory-efficient structure is trivial as each iteration can 

simply subdivide the previous level as appropriate. However, this 

significantly reduces the extent to which parallelism can be exploited. This 

is acknowledged by (Karras, 2012), who demonstrates this can be solved 

using an efficient parallel tree construction algorithm for spatial data that is 

well suited for the GPU by utilizing the spatially coherent properties of 

Morton codes. Morton codes describe the path to take through an octree 

to reach a leaf. This property is utilized such that each interior node can 

calculate the split position of all its children in-place, based on the depth of 

the first difference in the bit representations of the Morton codes. 

By allowing all interior nodes of the tree to be processed independently, all 

nodes in the tree can be constructed simultaneously. This is clearly 

superior to constructing each level of the tree iteratively. The performance 
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gains are particularly pronounced for large workloads that can sufficiently 

fill the GPU to take advantage of all its available resources. 

However, to make use of this algorithm, a complete set of the leaf 

nodes are required to be in sorted order of their Morton codes. Therefore, 

this algorithm is well suited to applications that involve building an 

acceleration structure around existing spatial data - for example, to 

construct a bounding volume hierarchy to accelerate collision detection or 

raytracing. This algorithm is not applicable in the case of constructing new 

spatial data, where the next level in the tree depends on the properties of 

the preceding level. In such a case the tree must be constructed one level 

at a time, as interior nodes can no longer be evaluated independently. 

 

(Evans, 2022) perform a thorough comparison of SDF traversal methods 

and intersection methods, resulting in a proposed novel analytic voxel 

intersection method. This method works by representing the iso-surface 

within a voxel (in this case, a 23 grid of distance field samples) with a cubic 

polynomial. The cubic polynomial defining the iso-surface can be 

differentiated to give a quadratic polynomial, from which the solutions detail 

any ray segments containing intersections with the surface. Newton-

Raphson iteration can then be performed to quickly converge on the point 

of intersection. This method is compared to other analytical methods of 

intersection, such as repeated linear interpolation and analytical cubic 

polynomial solvers, as well as sphere tracing as an example of an iterative 

method. It found that the analytic methods of calculating intersection with 

the iso-surface performed significantly better than sphere-tracing. While 

this is a useful result for the rendering of SDF geometry, methods of 

calculating intersection have no bearing on construction performance. 

A comparison of grid traversal algorithms is also performed. It 

compares grid sphere-tracing – the method used in Claybook (Aaltonen, 

2018), a sparse voxel set – where every voxel is uniquely associated with 

a raytracing bounding box, sparse brick set – like the method used in 

Dreams (Evans, 2015), and sparse voxel octree – as described by (Laine 

& Karras, 2010). It was found that grid sphere tracing performed best in 

open and simple scenes, whereas sparse brick set and sparse voxel octree 
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performed well compared to other techniques in complex scenes. It is 

speculated that this is due to improved cache coherency as the data is 

stored more compactly. However, sparse voxel set outperformed all other 

methods in general by leveraging DXR hardware therefore requiring less 

work in the custom software intersection shader. 

While the rendering performance of various SDF traversal and 

intersection methods is thoroughly analysed, it does not touch on which 

methods are best suited to fast reconstruction. Nevertheless, as grid 

sphere-tracing is very similar to Claybook (Aaltonen, 2018), it is known that 

it is a suitable structure for modification. Sparse voxel set is a simpler data 

structure that relies on raytracing hardware, and consequently could be 

simpler to construct. However, it does have a much more significant 

memory overhead compared to the other methods. Sparse brick set is a 

good compromise between grid-sphere tracing, which has been shown to 

work with real-time modification, and sparse voxel set, which outperformed 

the other methods in Evans study.  

2.2 SDF Representation 

Dreams (Evans, 2015) is a strong example how SDF-based geometry can 

be applied within a commercial game. SDFs have a natural affinity for 

constructive solid geometry (CSG), where solid 3D shapes can be 

constructed through the unions and subtractions between primitive shapes. 

This is used to create simple and intuitive sculpting tools – which is 

favourable within a user-generated content game. Objects in Dreams, 

called ‘Things’, are constructed from lists of ‘edits’, where an edit is a 

primitive shape described by an analytical signed distance function. Edits 

can only be union-ed with or subtracted from other edits, forming an entirely 

right-leaning CSG tree. This simplifies to a linear list of edits to be applied 

in order. As well as supporting binary union and subtraction operations, 

Dreams allows for smoothed addition and subtraction, where the shapes 

blend into each other over a specified radius. These smooth operations are 

implemented using a ‘smooth minimum’ function, an example of which is 

shown in Figure 1. However, as this function has an infinite range – it 
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reaches zero at infinity – Dreams uses a formula for smooth operations that 

will blend over a fixed radius (Evans, 2015, pp. 30). 

 

Figure 1: A comparison between the minimum (left) and smooth minimum (right), as defined by 

(Quilez, no date), of two functions. 

Dreams does not directly render the list of analytical signed distance 

functions in their functional form, but instead uses a series of compute 

shaders (the ‘evaluator’) to discretize these functions into a sparse distance 

field. The resulting voxels in this distance field are then grouped into ‘bricks’ 

of 83 voxels.  

For the evaluator to be useable in a real-time application, edit culling 

is performed as aggressively as possible. This is achieved through 

hierarchically subdividing around the edit surfaces until a precise list of 

edits per voxel is acquired. The balance between fidelity and speed is 

complex. For example, not subdividing enough results in cracks in the 

surface, but subdividing more than necessary results in additional 

unnecessary work and greater latency. Through its advanced culling 

solutions, Dreams can evaluate objects with many thousands of edits. 

It is interesting to note that Dreams uses max distance norms 

(Evans 2015, pp. 29). Instead of a Euclidean distance, the primitive 

distance functions calculate the greatest component of the absolute value 

of the distance, i.e., either the distance along the x, y, or z axis, whichever 

is largest. Consequently, distance functions can be simpler and faster to 

compute as generally less square root operations are required. 

Furthermore, some primitives, such as ellipsoids, do not have exact 

Euclidean distance functions but do have an exact max norm distance 
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function. Finally, instead of distances implying a bounding sphere, they 

imply a bounding box, which simplifies evaluation schemes that perform 

culling using a grid. However, in a raytracing context, max norms can cause 

issues for secondary rays which will originate from an objects surface. This 

is not an issue for Dreams as it does not use raytracing. 

This approach shares similarities with the approach taken by 

Gigavoxels (Crassin, 2009), with key differences to make the technology 

useful for a game. In Gigavoxels, the entire world is represented by one 

single volume, and this is impractical for use in games. Dreams overcomes 

this by, instead of tracing rays from the eye into a hierarchy of bricks, 

choosing a view-dependant cut through the tree of bricks in advance and 

rasterizing their bounding boxes. This also removes the need for any 

indirection within the inner ray-marching loop, as each rasterized cube 

directly corresponds to a single brick. 

Once rasterized, parallax occlusion mapping (Tatarchuk, 2005) is 

performed to reveal the SDF iso-surface within each brick. The dimensions 

of the bounding boxes are adjusted to maintain a constant screen-space 

size – which provides appropriate filtering of the distance field data to 

produce an anti-aliased image. 

While interactive CSG with SDF’s is a core gameplay mechanic for 

Dreams, it does not allow for the edits themselves to be modified once 

evaluated. This means that while Things in Dreams benefit from the CSG 

properties of SDFs, the edits within an object are static. With newer and 

more powerful hardware becoming available, an investigation into 

dynamism within objects through on-the-fly animation of the edits is 

worthwhile. 

 

In all studies seen thus far, real-time uses of signed distance functions rely 

on initially sampling the functions into a discrete grid of distance data. 

However, an alternative approach is presented by (Aeva, 2022) that avoids 

discretization altogether. The analytical signed distance functions are 

sphere-traced as the scene is rendered, as often seen in Shadertoy 

(Quilez, no date). 
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To make this feasible for real-time rendering, an offline step is 

performed that analyses the CSG tree to compile a large set of shaders 

that can each correctly render a portion of the scene while performing the 

minimum number of signed distance function evaluations per ray. While an 

interesting and unique approach, unfortunately it is not suited to real-time 

modification as continuously recompiling shaders at runtime is not feasible, 

and not an intended nor effective use of the GPU hardware. 

2.3 SDF Reconstruction in Real-Time 

There are much fewer examples of how continuous reconstruction or 

modification of SDF geometry can be performed in real-time. Claybook 

(Aaltonen, 2018) is one key example of a fully real-time deformable SDF-

based world in a game. This world is formed of one global SDF of resolution 

1024x1024x512, from which a series of five mip levels are constructed. 

This single SDF volume is rendered using a sphere-tracing algorithm. Each 

subsequent mip level encodes distance values twice as great as the 

previous level, and this is used to accelerate sphere-tracing. By sampling 

coarser mip levels, greater distances can be travelled in each sphere-

tracing iteration while still travelling conservatively. The magnitude of the 

distance value sampled at the current location informs the algorithm when 

it is appropriate to ascend or descend mip levels. 

Modification is performed through allowing pre-defined ‘brushes’ to 

be applied to the world SDF. Claybook stores the world SDF as a dense 

volume; empty and non-empty regions of space are stored in memory alike. 

This allows the algorithm to make use of the locality of the brushes; a brush 

has a deterministic range and only the nearby affected areas of the world 

SDF need to be re-evaluated when a brush is applied. This would not be 

possible in the case of a compacted data structure, as location in the data 

structure cannot be inferred from location in space without maintaining an 

indirection table of some form. Even with such a structure, the number of 

surface-intersecting voxels is not static, and the structure would require 

insertions, which is a slow and difficult operation to implement. The conflict 

of compaction and dynamism would require the structure to be rebuilt from 

scratch per change. Therefore, it would no longer possible to take 
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advantage of the locality of the brushes if the volume were stored in a 

compact form like the methods detailed in Efficient Sparse Voxel Octrees 

(Laine & Karras, 2010) or Gigavoxels (Crassin, 2009). This demonstrates 

a general trade-off between the memory efficiency of a data structure and 

its ability to be easily modified. 

 

AMD’s Brixelizer (Kramer, 2023) builds a global SDF for a scene of triangle 

geometry in real-time, with support for dynamic geometry. This SDF can 

then be used for fast calculation of ray-scene intersections for purposes 

such as global illumination. 

While it shares the goal of the present research of constructing an 

SDF every frame, it is in a slightly different context – where one SDF is 

created for an entire scene around existing triangle geometry. As only a 

single SDF is created per scene, it can be generated in a view-dependent 

manner using several cascades of decreasing resolution to improve 

construction performance. Brixelizer, like other technologies that have 

been discussed, constructs one global distance field that is constructed 

from a collection of local distance fields called ‘Bricks’. Bricks are 

constructed around the surface of geometry in the scene. Once all bricks 

have been constructed, a tree of the axis aligned bounding boxes (AABBs) 

of the bricks is constructed in a bottom-up fashion. This could make use of 

a parallel tree construction algorithm such as described by (Karras, 2012).  

Instead of evaluating a distance per sample independently, a jump-flooding 

algorithm is used to populate samples that do not directly intersect with the 

surface. First, all samples that intersect with the surface are set to the 

minimum representable value, and then distance values are extrapolated 

for all remaining samples in the volume. 

This is useful where calculating a distance to the surface is 

significantly more complex than a binary intersection test, as is the case 

with voxelizing triangle geometry. However, in the case of evaluating 

analytical signed distance functions, where the product of an intersection 

test is the distance value itself, this method offers no benefit.   
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Chapter 3 Methodology 

An application was developed using DirectX 12 and DirectX Raytracing to 

construct and render SDF-based objects, with the focus on optimization for 

objects that are re-constructed continuously. As there is a more significant 

wealth of literature based on rendering sparse distance fields, this research 

focused on how they can be constructed quickly by making effective use 

of the parallelism of a modern GPU. 

The same terminology as used in Dreams (Evans, 2015) is utilized 

– where an ‘edit’ is a primitive analytical signed distance function, and a 

‘brick’ is a small cubic volume of discrete distance field data. In this case, 

a brick is defined as a single raytracing AABB that contains 63 distance 

samples, with an additional one-voxel neighbourhood giving 83 samples in 

total. 

To allow for simultaneous construction and rendering, each object 

will possess two full sets of resources, such that one full set of resources 

can be written to without waiting for frames in flight to complete. This 

doubles the memory usage of an object, but crucially reduces stalls on both 

the CPU and GPU timelines and allows for asynchronous construction to 

be implemented with ease. 

3.1 Structure 

The aim for the artefact was to design an SDF geometry representation 

that is applicable to games applications in general. Therefore, no 

assumptions can be made about the style of the geometry that will be 

represented. 

The work of (Evans, 2022) stated that a sparse brick set is likely the 

best to use in a memory-constrained scenario as it is faster than a sparse 

voxel octree and uses the least memory. The success of Dreams (Evans, 

2015) also showed that a brick-based approach is applicable to real-time 

games applications. Gigavoxels (Crassin, 2009) also demonstrates how 

out-of-core rendering and mipmapping-based LOD systems can be 

achieved using bricks. 
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An additional attraction to a brick-based structure is that work for 

evaluating the distance field can naturally be divided in a GPU-friendly 

manner. An 83 brick of data can be processed by a thread group of 83 = 

512 threads. (Evans, 2015) also uses 83 samples per brick, as that 

matched the wavefront size of the targeted GPU hardware. 

Even though each brick contains 83 samples, only the inner 63 

samples are sphere-traced. As sampling with linear filtering will gather the 

8 surrounding values and perform interpolation to achieve a single filtered 

sample, a neighbourhood of voxels is duplicated for each brick to avoid the 

sampler from crossing brick boundaries. This does result in 58% of each 

brick being solely dedicated to adjacency data but enables the use of 

texture sampling hardware to perform the interpolation. Additionally, the 

performance implications of divergent reads at voxel boundaries are 

avoided. 

For these reasons, bricks were decided upon to be the core of idea 

of the structure used in this application. 

3.2 Rendering 

The implemented rendering method is similar to the ‘sparse brick set’ 

method described by (Evans, 2022) as it also makes use of hardware 

accelerated raytracing. A raytracing AABB is constructed for every brick. 

These bounding boxes are placed into a bounding volume hierarchy (BVH) 

to allow for hardware-accelerated raytracing. Only the leaf bricks are 

required to build the BVH. All other levels of the hierarchy are discarded 

after construction. If, in future, a level-of-detail or mip-mapping scheme was 

introduced, similar to the one present in Gigavoxels, the full hierarchy of 

nodes would need to be retained. 

Once the hardware raytracing detects a potential intersection 

between a ray and an AABB, a software intersection shader is invoked. 

The tmin and tmax of intersection with the AABB are calculated, and this gives 

a ray interval over which to check for intersection with the isosurface. The 

point of intersection is transformed into the bounding box’s local coordinate 

system, ranging from [0,1]. 
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An intersection between the ray and the isosurface described by the 

distance field within the brick is found iteratively using sphere-tracing (Hart, 

1995). Despite (Evans, 2022)’s findings that analytical intersections 

performed faster, sphere-tracing is utilized because it is a simpler 

algorithm, and the focus of this research is on construction methods. Even 

with sphere-tracing, rendering is generally much faster than construction, 

and consequently optimization efforts were focused on construction 

instead. Nevertheless, it is likely that rendering performance could be 

increased by implementing an analytical voxel intersection test as per 

(Evans, 2022). 

Distance values are sampled from the volume using trilinear 

sampling. Distances need to be transformed from the formatted form stored 

in the volume texture to distances in the space encoded within the AABB 

– where the sphere tracing is being performed. The formatting of distance 

values is discussed in section 3.3.7. 

As all geometry within a brick is opaque, sphere-tracing can be 

terminated upon the first intersection with the surface. The intersection 

point is transformed back into object-space, so that the t-value of 

intersection can be calculated as the distance between the object-space 

ray origin and the object-space position of intersection. 

Surface normals are calculated using central differencing to find the 

gradient in the distance field at the point of intersection. The tetrahedron 

technique (Quilez, no date) would be an improved method, as it only 

requires 4 samples as opposed to 6. 

3.3 Construction 

Constructing an SDF object can be divided into 3 stages. First, the edit list 

is analysed to identify dependencies between edits. Secondly, hierarchical 

brick construction is performed which consists of sub-stages described in 

sections 3.3.3 through 3.3.6. This set of sub-stages can be performed 

iteratively until the desired brick size is reached. Finally, the edits for each 

brick can be evaluated to populate the brick pool with the distance field 

data. Bounding boxes for the raytracing acceleration structure are also 

constructed in this stage. 
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Initially it may seem like a structure that could be partially 

reconstructed would be ideal; for example, if an edit is applied that only 

affects one octant of the object, then only that octant should be 

reconstructed. This idea is applied in Claybook (Aaltonen, 2018). However, 

as discussed, this is not practical with a compacted data structure. 

Therefore, the structure implemented is rebuilt from scratch upon every 

modification. 

3.3.1 Top-Down Construction 

A top-down approach to construction is taken, where the algorithm begins 

at the coarsest level of bricks and iteratively refines until the desired brick 

size is reached. 

Performing construction this way has several advantages. For 

example, larger regions of space can be culled from further evaluation. If a 

brick is culled in an early iteration, then all space within that brick is never 

required to be visited again. This allows for large areas of space to be 

culled quickly and much larger and sparser objects to be feasible to 

construct. An example of how an object is hierarchically refined is shown 

in Figure 2. 

Edit index buffers are also refined at each stage of construction, 

which reduces the number of edits that must be evaluated in the brick 

counting stage in the next iteration. As edit evaluation is generally the 

bottleneck of construction, evaluating as few edits as possible is critical to 

real-time performance. Edit index buffers are described further in section 

3.3.2. 

It also simplifies the process of ensuring that all bricks are sorted in 

a spatially coherent order, which helps cache-coherence. If each brick sorts 

its sub-bricks in a spatially coherent order in each iteration, then that is 

enough to guarantee the entire buffer is sorted when brick building 

completes. This allows all sorting to be performed within each compute 

shader group –no global sorting stage is required. 
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Figure 2: Two iterations of brick building. 

However, there are also disadvantages to top-down construction. 

These issues are overviewed by (Karras, 2012) and discussed in Chapter 

2. As the highest levels of the hierarchy contain few bricks, parallelism is 

severely limited in the first two iterations of construction. The first iteration 

will only contain 64 bricks – which is far from enough to fill the GPU with 

work. The second iteration can contain up to 4096 bricks, which is still not 

enough to fully occupy the GPU. However, as the tree is wide, the number 

of bricks can increase by up to a factor of 64 each iteration. By the third 

iteration this issue dissipates. This issue would be more pronounced with 

a narrower tree, such as an octree, where the number of bricks grows 

slower with each iteration. 

3.3.2 Edit Dependencies 

Generally, not every distance sample within the object will be 

affected by every edit. To allow for efficient evaluation of the distance field, 

the minimum number of edits should be evaluated for every sample. 

However, maintaining edit relevancy data on a per-sample basis would 

require significantly greater memory overhead and increase thread 

divergence. Therefore, edits are culled at a per-brick granularity. This 

allows all threads in a group to co-operate to build relevancy data for each 

brick and reduces divergence within a group during evaluation, as every 

thread will evaluate the same edits in lockstep. 
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The indices of all edits relevant to a brick are stored. Only one index 

buffer is allocated for each SDF object, and each brick sub-allocates from 

this buffer. In the artefact, it was defined that edits lists may contain up to 

a maximum of 1024 edits. This allows for 16 bits to be used per index. The 

full construction of index buffers is described in section 3.3.6. 

To ensure index buffers are constructed correctly, dependencies 

between edits must be identified. As the edit list is the same for all bricks, 

edit dependencies can be computed a single time prior to brick 

construction, and re-used throughout each iteration of brick building. 

An edit dependency occurs if any edit in the list will influence the effect of 

a subsequent edit. This is only relevant when using smooth edits – where 

an edit could produce different geometry depending on the preceding edits 

and amount of blending. To be able to correctly cull smooth edits, a precise 

analysis of edit dependencies is required. 

A smooth edit is dependent on a preceding edit if their ranges of 

influence overlap – where the range of influence is the boundary of the edit 

inflated by its smooth blending radius. To make this calculable, the smooth-

minimum function with a fixed radius as used by (Evans, 2015) was utilized. 

Determining the intersection of two signed distance function primitives is 

not trivial, so a simplification where conservative bounding spheres were 

used for all primitives in this artefact. This is a poor approximation in many 

cases, but correct geometry will still be produced at the expense of more 

edits being evaluated than necessary. A more thorough implementation of 

signed distance function intersection detection would improve the 

efficiency of edit culling. 

An example is shown in Figure 3, where the boundary of one brick 

is displayed, as well as 3 edits and their ranges of influence. The edits are 

enumerated in the order they appear in the edit list. In this example, it is 

obvious that the red edit is relevant to the brick. The purple edit is also 

relevant, as its range of influence extends within the brick and therefore 

can affect the geometry within. While neither the green edit nor its range of 

influence is within the brick, as its range of influence overlaps with the red 

edit’s range of influence, it is determined to be dependent on red and 

therefore is also relevant to the brick. Yellow is not involved in any 
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dependencies nor intersects the brick in any way and can therefore be 

culled. 

 

Figure 3: An example of identifying edit dependencies and selecting relevant edits for a brick. 
Edits 1, 2, and 3 would be selected and edit 4 culled. 

Each thread in a compute shader dispatch is assigned a pair of edits 

to process. By dispatching a linear array of threads, and by using the 

largest triangular number less than the thread’s index, a unique edit pair 

for each thread can be identified. In this scenario, work is balanced 

between threads helping to maximise occupancy.  

If edit A is a smooth edit, the thread will check if it overlaps with edit 

B. If so, the index of edit B is inserted into edit A’s dependency list. If edit 

B is also a smooth edit, then the index of edit A is also insert into edit B’s 

dependency list. Due to the implementation of the edit culling algorithm, 

dependencies can be inserted in any order. 

The dependency buffer could be compacted once it has been 

populated. It could be investigated if the time spent compacting the buffer 

results in a net reduction in construction time due to improved data locality 

in the dependency buffer. 

3.3.3 Brick Counting 

A compact buffer of bricks is maintained throughout the construction 

process. This is done to avoid the need for excessively large intermediate 

buffers. To achieve this, the first step in each iteration is to determine the 
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quantity of sub-bricks each brick will be divided into. This is done by 

evaluating the edit list for each potential sub-brick to determine if it will be 

intersected by the surface. Only edits referenced by the parent brick’s index 

buffer need be evaluated. Every sub-brick intersected by the surface is 

marked as such using a bitmask within the parent brick. This allows the 

sub-bricks that require construction in the brick building stage (section 

3.3.5) to be recovered without re-evaluating the edit list. The sub-bricks 

cannot be constructed immediately as the indices at which they will be 

placed into the buffer need to be calculated first. 

As each group processes a single brick, and a brick can be split into 

64 sub-bricks, each group consists of 43 threads. Consequently, bricks will 

quarter in size with every iteration. The total number of sub-bricks that will 

be produced from a parent brick is recorded using a group-shared atomic 

counter. Once the sub-bricks have been counted, the final count is stored 

in global memory to allow the final indices of each sub-brick to be 

calculated in the next stage. 

3.3.4 Scanning 

The indices of all sub-bricks to be constructed can be calculated by 

performing a prefix sum, or scan, of the sub-brick counts for all bricks. 

Many implementations of prefix sum suitable for a GPU have been 

developed, and the implementation described by (Harada & Howes, no 

date) was followed. 

Multiple stages of scanning are required. First, each group of 64 

threads will perform a scan. Then, the output from the first stage will also 

be scanned by a subsequent dispatch of 64 threads. Then, the result from 

each stage is summed to produce a final index offset per brick. In cases of 

more than 262,144 bricks, two stages of scanning will be insufficient for the 

second scan to fit within a single group. In this instance multiple sums are 

performed in the summing stage, resulting in one additional load from the 

scan buffer for every 262,144 bricks constructed. A better solution would 

have been to allow for each thread to locally scan more than one value. 
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3.3.5 Brick Building 

With the final location for each brick within the output buffer now 

determined, the sub-bricks can be constructed and placed into the buffer. 

The location of the sub-brick can be determined from its index within its 

parent. Before the sub-bricks are placed in the output buffer, they are 

sorted by their Morton codes to ensure that the brick buffer remains 

spatially coherent. As construction is performed one level at a time, the 

entire buffer of bricks can be guaranteed to be sorted simply through 

sorting within each group in each iteration. 

 

Figure 4: Spatial coherence of the bricks. Hue increases with index into the buffer. 

An enumeration sort is utilized, as there can only be a maximum of 

64 sub-bricks. This again takes advantage of the 1:1 mapping between 

threads and sub-bricks, where each thread calculates the sorted index of 

one brick. Once sub-bricks are sorted within a group, they are placed into 

the global buffer of bricks with respect to the group-local order, allowing the 

global buffer to remain both compact and spatially coherent. The 

visualization in Figure 4 shows that nearby bricks have similar hues and 

are therefore located nearby in the brick buffer. This is advantageous for 

making effective use of the cache during rendering – as nearby threads will 

likely access adjacent bricks, or a thread is likely to access a neighbouring 

brick when exiting a brick if an intersection was not found. Furthermore, it 
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is likely that bricks nearby in space will access similar edits, which is 

beneficial for cache coherency during evaluation. 

3.3.6 Edit Culling 

Once new sub-bricks have been constructed, a new index buffer must be 

constructed for each. This can be done by refining its parents index buffer. 

As every sub-brick is entirely encapsulated by its parent, there will never 

be an edit that can affect a sub-brick but not its parent. 

There are two important considerations when constructing the index 

buffer – firstly, indices must be sorted to produce the correct geometry. A 

union followed by a subtraction will produce different geometry than the 

subtraction followed by the union. Secondly, an index should not occur 

more than once to avoid unnecessary work. 

Both operations can be solved simultaneously with the use of a 

bitfield. Every edit is assigned to a corresponding bit in the bitfield. For a 

maximum of 1024 edits, this requires a bitfield 1024 bits wide, represented 

by a 32-element array of 32-bit unsigned integers. 

To determine if an edit should be culled or not, edits are evaluated 

at the midpoint of the brick. If the evaluated distance is greater than the 

brick size the edit can be culled. All relevant edits set their corresponding 

bit in the bitmask. If an edit is smooth, then all its dependencies are 

retrieved from the dependency buffer, and the corresponding bit of each 

dependency is also set. 

The index buffer will then be the indices of all the set bits within the 

bitfield. A prefix sum can be performed to compact the bitfield, and then the 

indices of the set bits can be written to the global index buffer. Indices are 

guaranteed to be both unique and in ascending order. 

The effect of edit culling is displayed in Figure 5. It can also be seen 

how smooth blending can dramatically increase the number of edit 

evaluations per sample. 
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Figure 5: Edit count per voxel for 'Drops' for a blending radius of 0.2 and 0.5 respectively, where 
green signifies 1 edit and red 16 edits or greater. 

3.3.7 Brick Evaluation 

The CPU must wait until hierarchical brick construction has completed prior 

to commencing brick evaluation. This is because the final brick and index 

counts are required to allocate brick pools and index buffers. This stall 

could be avoided by allocating a brick pool large enough to contain the 

worst-case scenario number of bricks. However, accommodating for the 

worst-case scenario defeats the purpose of attempting to store the brick 

compactly in a pool in the first place. 

As resizing the brick pool is an infrequent occurrence, the stall could 

also be avoided by simply continuing with brick evaluation and afterwards 

it could be determined if the brick pool was large enough for brick 

evaluation to be successful. If not, then a new brick pool can be allocated, 

and construction restarted. Therefore, the stall will not be present in nearly 

all constructions, however construction will be executed twice in cases 

where the brick pool requires resizing. 

Once the brick count has been determined and the pool has been 

allocated, the distance field can be evaluated. To evaluate the distance 

field, each brick is processed by one thread group. Each thread group 

consist of 83 threads, and each thread will evaluate the edit list once to 

obtain a single sample. 

Evaluating simply involves iterating through the index buffer of the 

brick and evaluating each edit at the thread’s corresponding location in 
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space. The results from each edit are combined according to the CSG 

operation of each edit, and the final distance value is stored in the brick 

pool. The brick pool is formatted to contain 8-bit signed normalized values, 

which gives a precision of 256 possible values per voxel. Distances stored 

within the pool are mapped such that the maximum representable 

magnitude of 1 corresponds to 4 voxels, allowing each voxel to encode a 

range of [-4,4] voxels. Therefore, surfaces can be represented with a 

precision of 1/32 of the brick size. A slice from the brick pool of the ‘Drops’ 

scene is displayed in Figure 6. 

 

Figure 6: A cross-section from 'Drops' brick pool, with a magnified excerpt on the right. 

To speed up evaluation, edits are first loaded into group-shared 

memory. As the maximum number of 1024 edits would not fit in group-

shared memory at once, and since edits are evaluated independently, edits 

are loaded into group-shared memory in chunks of 256 at a time. Using 

larger chunks could limit occupancy due to the quantity of group-shared 

memory required per group, and using smaller chunks could limit the 

amount of parallelism achieved and result in more threads waiting at 

barriers for sibling threads. Potential optimization of this value is discussed 

but thorough evaluation can be considered for future work. 

3.5 Testing and Evaluation 

Testing was carried out to determine the feasibility of modifiable SDFs in a 

real-time application. The focus of the testing is to investigate if the 

implemented data structure and construction algorithm made effective use 
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of the GPU to allow for an SDF-based representation of geometry that is 

modifiable in real-time and scalable for the purpose of a game. 

3.5.1 Method and Tools 

NVIDIA Nsight Perk SDK was used to gather performance metrics. The 

ranges of GPU work to profile were specified in the application source 

code, and the application was launched in a profiling configuration to collect 

the specified metrics from the GPU. The collected data was formatted and 

output to a CSV file for further processing and analysis in Microsoft Excel. 

Nsight Perf mitigates the overhead of metric collection by profiling nested 

in ranges in isolation over multiple passes, such that no profiling operations 

will be executed within a range that is being actively profiled. 

 

The memory usage of each resource of the SDF object was measured, for 

a brick size of 0.0625 world-space units. This includes the brick pool, the 

brick buffer, the index buffer, the raytracing AABB buffer, and the raytracing 

bottom-level acceleration structure (BLAS). Although the AABB buffer is a 

transient resource and can be discarded once the acceleration structure is 

constructed, in the case where objects are reconstructed each frame the 

AABB buffer will instead be retained as a persistent resource. As such, its 

memory usage is collected alongside that of the other resources. 

Memory usage was measured separately from the performance 

metrics for rendering and construction. The memory usage was measured 

upon the first construction of the object, at timestamp t = 0s. This was done 

as the brick pool will be allocated optimally to provide the tightest fit for the 

number of bricks in the object, which may not remain true as the object 

animates over time. Objects were constructed with edit culling enabled. 

For texture resources, e.g. the brick pool, memory usage was measured 

as the total size reported by the function listed in Figure 7.  

 
ID3D12Device::GetCopyableFootprints(...); 

 

Figure 7: The function used to obtain the memory consumption of the brick pool. 

This provides a GPU-agnostic measure of the footprint of a 

resource. For buffer resources, the memory usage was calculated directly 
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as the number of elements within the buffer multiplied by the byte stride of 

each element. 

 

In the context of a game, visual artefacts are unacceptable. Aside from any 

artistic considerations, the geometry must be technologically sound to 

produce the desired geometry with no artefacts. 

With any discretized data, the resolution should be befitting the rate 

at which it will be sampled. In this case, this means that the bricks 

composing an object should be small enough such that even with the 

limited precision of the brick pool, the distance field produces a visibly 

continuous surface when sampled at the resolution of the display. It may 

also be the case that even small brick sizes do not correctly represent the 

intended geometry accurately. Visual fidelity will be evaluated as how 

closely the geometry constructed using bricks matches the same geometry 

rendered analytically. 

To evaluate visual fidelity, a simple scene was constructed 

containing two spheres smooth blending together, referred to simply as the 

‘Spheres’ scene henceforth. A ground-truth image of this scene was 

obtained by rendering this geometry analytically, with no discretization of 

the distance field. The ground-truth image is shown in Figure 8. The same 

scene was then constructed from a discretized distance field built from 

bricks 0.5, 0.25, 0.125, and 0.0625 world-space units in size. Through 

comparing each brick size to the ground truth, any error in the surface 

shape and surface normals can be identified. 

By constructing the ‘Drops’ scene with and without edit culling, the 

correct-ness of the edit culling algorithm can also be validated visually. The 

surface shape and surface normals of the produced geometry should be 

identical in both scenarios. The scene was rendered at identical 

timestamps and identical viewpoints with and without edit culling to 

produce two images. These images are compared to discern inaccuracies 

in the edit culling algorithm. 
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Figure 8: The ground-truth render of the ‘Spheres’ scene for evaluating fidelity. 

3.5.2 Metrics 

Different sets of metrics were collected for rendering and for construction 

so that only relevant data is collected for each. The metrics collected, along 

with justifications for the relevance of each metric, are displayed in Table 1 

and Table 2.  

Throughput is defined as the percentage of the maximum 

achievable rate that data is processed for a specific hardware unit or 

collection of units. Only metrics for the ALU and LSU hardware units are 

included in the data as it was found that other the hardware units had 

negligible usage by comparison and were not the bottleneck in any 

circumstance. 

 

Metric Reasoning 

Duration (ns) To determine the latency of an operation or 

workload. 

Raytracing Core 

Throughput (%) 

To determine to what degree the raytracing 

hardware is exploited. 

SM Throughput (%) To give a general sense of how close 

performance is to the theoretical maximum. 

L2 Cache Hit Rate (%) To determine the application is using cache 

coherent data access patterns. 

Table 1: Metrics collected for rendering. 
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Metric Reasoning 

Duration (ns) To determine the latency of an operation or 

workload. 

CS Warp Activity (%) To measure occupancy – how well the 

algorithm is managing to maximise the use of 

GPU resources. 

SM Throughput (%) To give a general sense of how close 

performance is to the theoretical maximum. 

L2 Cache Hit Rate (%) To determine the application is using cache 

coherent data access patterns. 

ALU & LSU 

Throughput (%) 

To determine which hardware unit is seeing 

the most significant use. 

CS Warp Launch Stall 

Reason (%) 

To determine what hardware resources are in 

high contention. 

Table 2: Metrics collected for construction. 

3.5.3 Test Scenarios 

Both construction and rendering were profiled on 4 different scenes named 

Drops, Cubes, Rain, and Fractal. Screenshots of these scenes are 

displayed in Figure 9. Each scene contained one object which had 1024, 

216, 512, and 64 edits respectively. These scenes were designed to exhibit 

a variety of edit counts, edit density, and edit complexity. For example, 

Fractal only contains 64 edits – but these edits are individually expensive 

to evaluate. Drops contains 1024 edits that frequently intersect with a 

moderate amount of blending. Rain contains a variety of edit sizes and 

densities. Finally, Cubes contains sparse structures, which is traditionally 

a poorly performing scenario for sphere tracing. 

Tests were performed on each scene for brick sizes of 0.5, 0.25, 

0.125, and 0.0625 world-space units in size – where a smaller brick size 

results in a larger number of bricks produced. Each scene was tested with 

edit culling enabled and disabled. Therefore, the application was tested 

under 32 different scenarios in total to investigate the effectiveness of the 

data structure and construction algorithm. 
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50 captures were taken for each brick size for each scene, and 

mean values were calculated. For profiling rendering, one capture is 

defined as a single time the scene was rendered via raytracing. For 

profiling construction, one capture is defined as a single time an object was 

constructed. 

The scenes were rendered at a resolution of 3840px by 2160px. An 

orbiting viewpoint centred on the object was used to remove any bias each 

object may have for being rendered from a certain direction. Each scene 

was rendered at a timestamp of t = 5 seconds for every capture, allowing 

some warm-up time for each scene. 

The final image simply displayed the world-space normal calculated 

by each ray, and therefore rendering time does not include time spent 

performing lighting calculations and shading. Only primary rays were used, 

with a single ray cast per pixel. 

Rendering and construction were profiled in separate sessions as 

they are performed by separate GPU queues. Synchronous compute was 

used in all tests to ensure the GPU was not splitting its resources between 

work items.  

 
Figure 9: The test scenes (in row-major order): Drops, Cubes, Rain, and Fractal. 
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Chapter 4 Results 

All tests were performed on an Intel 12th Gen Core i7-12700 CPU with 

64GB of system RAM, with an NVIDIA GeForce RTX 3070 GPU with 8GB 

GDDR6 dedicated VRAM using driver version 551.86. 

 

Table 3 displays the number of edits composing each scene to 

provide context to the statistics displayed in the figures below. When the 

scenes were constructed with and without edit culling, different brick counts 

were obtained. These sets of brick counts displayed in Table 4 and Table 

5 for edit culling enabled and disabled respectively.  

In all figures, both brick sizes and brick counts are plotted with 

logarithmic axes for clarity as they increase exponentially.  

 

Demo Edit Count 

Cubes 216 

Drops 1024 

Fractal 64 

Rain 512 

Table 3: The number of edits composing each scene. 

 

Demo Brick Size (World-space units) 

0.0625 0.125 0.25 0.5 

Cubes 176,422 53,620 12,491 2,693 

Drops 362,731 79,248 19,083 4,043 

Fractal 444,899 107,653 27,107 7,111 

Rain 234,863 59,877 15,808 4,144 

Table 4: The number of bricks composing each scene when edit culling is enabled, for each brick 
size. 
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Demo Brick Size (World-space units) 

0.0625 0.125 0.25 0.5 

Cubes 183,491 55,765 12,406 2,693 

Drops 376,973 82,439 19,547 4,102 

Fractal 444,894 107,750 27,107 7,201 

Rain 238,107 60,666 15,934 4,160 

Table 5: The number of bricks composing each scene when edit culling is disabled, for each brick 
size. 

4.1 Rendering 

The mean time taken to perform raytracing of each scene for each brick 

size and each brick count are presented in Figure 10 and Figure 11 

respectively. Each scene was constructed with edit culling enabled. 

Figure 12 presents the mean Raytracing Core throughput for each 

scene and brick size. Constructed with edit culling enabled. Raytracing 

Core refers to the hardware-accelerated raytracing units on the GPU. 

The L2 Cache hit rate during rendering each scene at each brick 

size is displayed in Figure 13. This is the percentage of VRAM accesses 

that resulted in a cache hit from the L2 cache out of all VRAM accesses. 

A comparison between raytracing times of each scene constructed 

with edit culling enabled and disabled at a brick size of 0.0625 world-space 

units is displayed in Figure 14. 

 

Figure 10: Average time taken to raytrace each scene for each brick size. 
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Figure 11: Average time taken to raytrace each scene as brick count increases. 

 

 

Figure 12: Average Raytracing Core Throughput for each brick size for each scene. 
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Figure 13: Average L2 cache hit rate for each scene for each brick size. 

 

 

Figure 14: Average raytracing time for each scene with a brick size of 0.0625 with edit culling 
enabled and disabled. 
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4.2 Construction 

The mean construction time for each scene for each brick size, with edit 

culling enabled, is displayed in Figure 15. The mean construction time of 

the same scenarios, but with edit culling disabled, is displayed in Figure 

16. Power trendlines are displayed on both figures to show the trend as the 

brick size increases. A direct comparison between construction times with 

edit culling enabled and disabled is shown in Figure 17.  

Figure 18 displays the proportion of total construction time 

consumed by each stage, to establish an idea of the dominant stages in 

construction. The contribution from evaluating edit dependencies and 

AABB building is negligible in proportion and consequently these stages 

are not easily discernible in the figure. The data shown in this figure was 

taken from the Drops scene but found to be similar across the other scenes. 

The mean Streaming Multiprocessor (SM) throughput for each 

scene for each brick size with edit culling enabled and disabled is displayed 

in Figure 19 and Figure 20 respectively. A streaming multiprocessor refers 

to a group of computational units encapsulating all individual hardware 

units; therefore, SM throughput is a general measure of instruction 

throughput. 

Figure 21 displays the mean occupancy for each stage in 

construction, with edit culling enabled. Occupancy is defined to be the 

percentage of warp slots across all SM’s actively executing instructions out 

of all total warp slots available on the GPU. This data was taken from the 

Drops scene. 

Mean hardware unit usage during brick evaluation for each scene 

for each brick size with edit culling enabled is displayed in Figure 22, to 

illustrate the effect that the properties of the edits can have on the hardware 

usage during construction of a scene. The graph is divided in two halves, 

with the left-hand side displaying LSU throughput, and the right-hand side 

displaying ALU throughput. 

Figure 23 summarizes the reasons behind stalls in warp launches, 

where a stall occurs when the schedular must wait for some resource to 

become available before launching new warps. In general, the faster warps 
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can be launched the greater the overall throughput of the GPU will be. 

Warp launches may be stalled due to limited registers, limited CTA (Co-

operative Thread Array, NVIDIA terminology for a group) slots, limited warp 

slots, limited group-shared memory, or limited barriers. Limited barriers 

were not an issue at any point and therefore not shown in the figure. The 

data plotted was taken from constructions with edit culling enabled. 

 

 

 

Figure 15: Construction time for each scene for each brick size with edit culling enabled. 
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Figure 16: Construction time for each scene for each brick size with edit culling disabled. 

 

 

Figure 17: A direct comparison between construction times with edit culling enabled and disabled. 
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Figure 18: The time taken by each construction stage, as a percentage of total construction time. 

 

 

Figure 19: SM throughput as brick size increases for each scene, with edit culling enabled. 
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Figure 20: SM Throughput for each scene and each brick size, with edit culling disabled. 

 

 

Figure 21: GPU Occupancy for each construction stage as brick size increases. 
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Figure 22: Unit throughput during brick evaluation for the ALU and LSU for each scene and brick 

size. 

 

 

Figure 23: Warp Launch Stall Reason for each scene and brick size. 
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4.3 Memory 

The memory usage of each resource within an SDF object is displayed in 

Table 6. The brick counts are also displayed for context.  

Figure 24 shows the memory usage for each resource for each 

scene. Memory usage is displayed in megabytes with a logarithmic scale. 

Another visualization of the same data is shown in Figure 25, which 

illustrates the proportion of the total memory consumption of each object 

that each resource consumes. 

Figure 26 plots memory usage, in megabytes, against the brick 

count of the object. A linear trendline is also shown. 

 Cubes Drops Fractal Rain 

Brick Count 185,862 469,619 444,955 231,256 

Brick Pool (MB) 210 475 463 240 

Brick Buffer (MB) 10 25 24 12 

AABB Buffer (MB) 9 21 20 11 

Index Buffer (MB) 15 44 2 30 

BLAS (MB) 21 54 51 27 

Total (MB) 265 620 560 320 

Table 6: Memory usage in MB of each resource for each scene. 

 

 

Figure 24: Memory usage for each resource for each scene in MB. 
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Figure 25: Resource memory usage, displayed as a percentage of the object's total memory 

usage. 

 

 

Figure 26: Memory usage in MB by brick count. 
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4.4. Visual Fidelity 

The Spheres scene was constructed from brick sizes 0.5, 0.25, 0.125, and 

0.0625, and rendered from the same viewpoint. The results of each render 

are displayed in Figure 27. 

Each was then compared to the ground-truth render of the Spheres 

scene, which was obtained by rendering an analytic representation of the 

scene. The ground-truth render is displayed in Figure 8. 

The difference between the scene rendered discretely and the 

ground truth for each brick size is shown in Figure 28. In Figure 29, the 

differences are greatly exaggerated to demonstrate for clarity, where the 

noise in the surface normals can be seen. An example of how this noise 

can affect an object once a shading model has been applied is shown in 

Figure 30. 

The correctness of the edit culling algorithm is also tested visually, 

where the Drops scene was rendered with and without edit culling from an 

identical viewpoint. These renders are displayed in Figure 31. 

The error in the construction algorithm is therefore the difference 

between these two renders, which is displayed in Figure 32, although the 

differences are too small to be perceptible. The differences were 

exaggerated and magnified by image processing software to produce 

Figure 33, where small error in the edit culling algorithm can be identified. 

 

 

Figure 27: The fidelity test scene rendered at brick sizes (left-to-right) 0.5, 0.25, 0.125, 0.0625. 
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Figure 28: The difference between each fidelity test and the ground truth for brick sizes (left-to-

right) 0.5, 0.25, 0.125, 0.0625. 

 

 

Figure 29: Figure 28 with highly exaggerated colours for clarity. 

 

 

Figure 30: Noise can be seen in the surface normals. A series of magnifications are displayed on 
the right. 

 

 

Figure 31: The Drops scene rendered with edit culling (left) and without edit culling (right). 
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Figure 32: Error in the edit culling algorithm. The differences are imperceptible when not 

exaggerated artificially. 

 

 

Figure 33: Error in the edit culling algorithm, greatly exaggerated and magnified to be perceptible. 
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Chapter 5 Discussion 

5.1 Results Analysis 

5.1.1. Rendering Performance 

It can be noted from Figure 10 and Figure 11 that the Fractal scene takes 

considerably longer to ray-trace than all other test scenes at every brick 

size. There are several contributing factors toward this that illustrate the 

properties and challenges of both SDF rendering and raytracing in general. 

It is shown in Table 3 that Fractal contains significantly more bricks than 

the other scenes, although it will be discussed that this is not of significant 

impact to the rendering performance. However, the type of geometry in the 

Fractal scene is a typical poor case for sphere-tracing, where it contains 

fine structures with gaps between geometry. This requires a greater 

amount of sphere-tracing, as rays are more likely to intersect multiple 

AABBs as they skim between the geometry.  

Furthermore, as rays originate from the camera position and travel 

in the camera’s point of view, raytracing is a view-dependent process. The 

more rays that encounter geometry, the slower raytracing will be. In the 

case of Fractal, the edits are large and consume a larger portion of the 

screen than other scenes, and therefore more rays are likely to intersect. 

This view-dependence is a source of bias that is not accounted for in this 

study. It could be accounted for by measuring the total number of pixels 

that are covered by geometry, and either weighting performance figures 

accordingly to obtain an average performance per pixel, or by adjusting 

scenes such that each scene has the same amount of screen coverage. 

While the screen coverage is not consistent between scenes, it is 

consistent between brick sizes so meaningful conclusions can still be 

drawn about the rendering performance of this technology. 

Either way, it is still important to acknowledge that the time taken to 

raytrace the scene will increase as objects become closer and 

consequently consume more screen space. This can be both an advantage 

and disadvantage in a game scenario – it is appropriate for more rendering 

time to be dedicated towards nearby objects than distant objects. However, 
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in this case there is no gain in quality for the increased rendering time due 

to the fixed resolution of the volume. 

 

What is curious about the results is that raytracing time doesn’t increase 

with brick count, as displayed by Figure 11. Indeed, the brick size that 

resulted in the fastest ray-tracing times of Fractal was the smallest of 

0.0625. It could be expected that a greater brick count would result in 

slower acceleration structure traversal as there are simply more nodes 

through which to traverse, but this does not seem to be the case. One 

potential explanation could be that larger bricks will result in more empty 

space within a brick, which means more sphere-tracing iterations are 

required to reach the surface, and this negates any performance gains from 

faster BVH traversal. However, the distances encoded within the bricks are 

relative to the size of the brick and as such larger bricks will result in a 

larger world-space distance being travelled with every sphere-tracing 

iteration. 

The reason is likely to be that roughly the same amount of screen 

space is covered by bricks for all brick sizes, and therefore similar number 

of rays intersect with bricks in the first place. Sphere-tracing in the 

intersection shader is much more expensive than hardware BVH traversal 

and is therefore the dominant factor affecting raytracing performance – so 

increasing the number of AABB’s in the BVH does not significantly increase 

the time taken to traverse the acceleration structure, while the amount of 

sphere-tracing being performed is remaining relatively constant. Therefore, 

it can be suggested that rendering the same object from the same 

viewpoint will take similar times regardless of the brick size. 

This is supported by Figure 12, which displays that raytracing core 

throughput decreases with brick size. This suggests that more work is 

being performed by the hardware raytracing units at smaller brick sizes, 

even though similar frame times are achieved. This demonstrates that the 

amount of time saved by faster BVH traversal at larger brick sizes is then 

lost through having to do more sphere-tracing, as larger bricks are worse 

approximations of the underlying SDF isosurface. This result is intuitive – 

the two scenes that resemble the worst-case scenario for sphere-tracing, 
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Fractal and Cubes, show the lowest RT Core throughput. From this result, 

it can be suggested that more time is spent in the software intersection 

shader, and this leads to the raytracing hardware to be leveraged to a 

lesser extent. 

 

As mentioned in the literature review, (Evans, 2015) stated that rasterizing 

the bounding boxes of the bricks permitted the removal of any indirections 

in the tight ray-marching loop, which helped to improve cache coherence. 

It was anticipated that a similar result would be found in this artefact, as 

building a unique raytracing AABB for each brick similarly permits ray 

marching without indirection in the inner-most loop. However, it can be 

observed from Figure 13 that the cache hit rate decreases as the brick size 

decreases. It is speculated that this is due to higher contention for the 

cache when there are more bricks. This could potentially be improved by 

ordering the bricks within the brick pool along a Morton curve. While the 

bricks in the buffer are in order of their Morton codes, the respective order 

of the bricks in the pool is not. This would be a worthwhile optimization. 

 

The difference in rendering times for objects constructed with and without 

edit culling is miniscule. This is demonstrated in Figure 14. This suggests 

that rendering time does not appear to correlate with the number of edits 

from which an object is formed. This is as expected, and indeed the main 

motivation behind discretizing the distance field in the first place. 

5.1.2. Construction Performance 

Figure 15 demonstrates that construction performs at a time complexity of 

O(2n). This is to be expected; with each iteration of brick-building, the brick 

count can multiply by up to a factor of 64. Quartering the brick size will 

requires another iteration of brick-building, and the brick count will increase 

exponentially. This makes selection of brick size critical for objects that will 

be reconstructed frequently. Bricks that are too large will produce geometry 

of too low a resolution and result in under-sampling during rendering. 

However, choosing bricks that are too small, such that the distance field 

precision is less than a single pixel, results in unnecessary work being 
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performed during construction for no gain in fidelity. The brick size that 

exactly matches the precision of the distance field to the screen resolution 

would be ideal. 

 

Perhaps the most significant finding of this research is the effectiveness of 

the edit culling algorithm, demonstrated by Figure 17. At a brick size of 

0.0625, the Drops scene takes multiple seconds to construct without edit 

culling. This is significantly too slow for an interactive application. However, 

enabling edit culling increased performance approximately by a factor of 

32, with construction times of less than 100 milliseconds. As Drops 

contains the greatest number of edits, it sees the most benefit from edit 

culling. Nevertheless, all scenes saw significant gains in performance by 

enabling edit culling. These findings suggest that real-time reconstruction 

of SDF geometry would not be feasible without edit culling, and that 

developing the edit culling technology further would increase the suitability 

of this geometry representation to real-time interactive applications. 

 

The difference in the trend displayed in Figure 15 and Figure 16 is also 

critical – both cases still exhibit a time complexity of O(2n), but it can be 

seen that the construction time increases at a much slower rate when edit 

culling is enabled. It can further be noted that the scalability of the algorithm 

differs for each scene. Drops can be determined to be the least scalable 

as the brick size decreases, as it exhibits the steepest curve. Conversely, 

Fractal appears to scale better as brick size decreases. In fact, the rate of 

change of construction time with respect to the brick size is precisely in 

order of which scenes contain the most edits. It seems that in general, 

therefore, the more edits used to construct a scene, the less well the 

construction of that scene will scale as the brick size decreases. This is 

particularly important when considering how this technology will scale and 

can advise the selection of an appropriate brick size.  

It would be interesting to determine the scalability of constructing 

objects with edits counts beyond 1024. 1024 is too low a limit to be able to 

construct interesting game-quality assets. For example, assets in Dreams 

(Evans, 2015) commonly consisted of tens of thousands of edits. 
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It can be seen in Figure 18 that the brick evaluation duration grows at a 

much faster rate than the brick building duration. Edit dependency 

calculation and AABB construction are negligible by comparison. A 

possible explanation for this is that brick evaluation will generally processes 

a significantly greater number of bricks than brick building, up to a factor of 

64 times more. It can thus be suggested that brick evaluation is the critical 

stage in construction in terms of latency. This could be combatted through 

the development of more precise edit culling solutions. It can also be seen 

from Figure 18 that the proportion of time spent evaluating bricks is 

significantly higher when edit culling is disabled. It can be suggested from 

this that edit culling is effectively reducing the total amount of work to be 

performed. 

Edit culling in this artefact relies on approximately detecting 

intersections using bounding spheres, which in many cases can result in 

many more edits being evaluated per brick than in an optimal solution with 

precise signed distance function intersection calculation. While improved 

edit culling would decrease the time spent evaluating bricks, the number of 

bricks will still grow exponentially as the brick size decreases. 

 

Figure 19 shows that the Streaming Multiprocessor throughput, particularly 

for brick building, is extremely poor for large brick sizes. As discussed in 

section 3.3.1, early iterations of brick building will never be able to produce 

enough work to fill the GPU. This is further evidenced by the results shown 

in Figure 21, where brick building occupancy is particularly low at larger 

brick sizes. Low occupancy in tree building algorithms is the motivation for 

solutions like (Karras, 2012), where all levels of the tree can be constructed 

simultaneously to fully exploit the parallelism of the GPU. Unfortunately, 

this method cannot be used in this case as evaluating next level of bricks 

depends on the preceding level. Evaluating the leaf bricks first would 

require the entire edit list to be evaluated at every candidate space. The 

iterative space and edit culling provided through top-down construction 

would not be able to be used, and the resulting workload would not be 

feasible for real-time construction. 
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However, as shown by Figure 18 brick building only consumes the 

minority of construction time. It is possible, therefore, that limited 

occupancy in brick building is not a significant bottleneck compared to the 

latency of brick evaluation.  

Interestingly, Figure 20 shows that SM throughput is higher at larger 

brick sizes when edit culling is disabled. This does not necessarily mean 

improved performance; the lack of edit culling simply produces more work 

to be done, which causes a higher SM throughput. It is shown in Figure 17 

that doing less work in the first place is of lower latency than doing more 

work at a higher throughput. 

 

One interesting finding is that the properties of each scene are reflected 

through the ALU and LSU hardware unit throughputs displayed in Figure 

22. The Fractal scene is composed of only a few, but expensive, edits, 

therefore it is anticipated that more time will be spent evaluating the 

distance field versus loading edits from memory. Indeed, ALU throughput 

is significantly higher than LSU throughput when constructing the Fractal 

scene.  

Conversely, the Drops scene has a much greater number of edits, 

while each edit is faster to evaluate. This is once again reflected in the 

results; ALU throughput is low, and LSU throughput is high. It can be 

inferred that optimizing how edits are stored and loaded will see limited 

performance gains in scenes such as Fractal. Ultimately, it may be the case 

that it is largely hardware dependent – on a GPU that is bound by memory-

bandwidth, scenes composed of a lesser number of ALU-heavy edits would 

be a preferable option. 

 

The results in Figure 23 depict that group-shared memory is generally 

highly contended for each scene. This is due to the amount of group-

shared memory allocated for temporary edit storage in brick evaluation. 

Making use of group-shared memory during brick evaluation allows all 

threads in a group to co-operate by loading edits together and evaluating 

the same edits in lockstep. This greatly reduces the latency involved in 

reading edit data. However, the number of edits loaded into group-shared 
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memory at once is configurable. In all scenes tested, temporary group-

shared storage for up to 256 edits was allocated. This is excessive for a 

scene like Fractal or Cubes, as the entire scene is composed of fewer than 

256 edits. If available group-shared memory is the bottleneck for launching 

warps, decreasing this value would allow for a greater number of warps to 

be executed simultaneously and is therefore likely to decrease edit 

evaluation latency. 

However, not all threads will be able to contribute toward loading 

edits if the temporary edit storage is less than 64 edits in size, as there will 

be more threads than slots in the storage. This will result in threads sitting 

idly at barriers waiting for siblings to load edits when more edits could have 

been loaded from VRAM simultaneously. 

The precise optimal value likely depends on the average number of 

edits per brick. Despite Figure 23 suggesting that a lack of available GSM 

is stalling warp launches, Figure 21 shows that near-maximum occupancy 

is being maintained for brick evaluation at all brick sizes. It is possible, 

therefore, that only minimal gains in performance will be seen through 

optimizing this value. 

5.1.3. Memory Usage 

The optimal case for edit culling is where each brick will point to a single 

edit, and consequently the index buffer will be as small as possible. The 

Fractal scene is the closest scene to this optimum, as it contains only 64 

well-distributed edits. As such, it is expected that each brick will reference 

less than 10 edits. This is supported by the results shown in Figure 25. 

Despite the Fractal having the second most bricks, its index buffer is much 

smaller compared to all other scenes. By contrast, the Drops scene 

contains the maximum of 1024 edits, each with a large amount of smooth 

blending. As such, each brick will generally reference many edits. As 

expected, a proportionally much larger index buffer is required for the 

Drops scene despite it containing a similar number of bricks to the Fractal 

scene. 

Utilizing edit culling requires the memory overhead of storing an 

index buffer, but evaluating objects built from hundreds of edits would be 
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infeasible without an edit culling solution. Nevertheless, the index buffer for 

all scenes is negligible in magnitude compared to the size of the brick pool. 

The decrease in evaluation time is clearly worth the memory overhead of 

an index buffer. 

5.1.4. Visual Fidelity 

It is important that any algorithm to construct geometry produces the 

expected results. As such, the geometry produced by the construction 

algorithm developed in this research was tested against a ground-truth 

representation of the same geometry to discern any inconsistencies. 

Error in the produced geometry can be seen in Figure 28. It can be seen 

that geometry appears to become inflated at larger brick sizes. This is likely 

an artefact of the limited precision of the representation in the brick pool. 

At lower resolutions, the location of the isosurface can be determined less 

precisely, leading to rays terminating sphere-tracing earlier and producing 

an inflated surface. This inflation decreases as the brick size decreases, 

and a sufficiently small brick size would be able to match the surface shape 

precisely. 

Through the artificially exaggerated visualization of the error 

presented in Figure 29, noisy deviations in the surface normals can clearly 

be identified. Unlike the inflation issue, this surface normal noise does not 

dissipate as the brick size decreases. Instead, the frequency of the noise 

increases as the brick size decreases, while its magnitude remains roughly 

constant. It can thus be suggested that noise in the surface normals will be 

present and visually discernible at all brick sizes, and this can be identified 

as a limitation of the applicability of this representation of geometry within 

a game context. 

 

The accuracy of the surface normals is not only limited by the precision of 

the brick pool or resolution of the object. Error in the normals is further 

exacerbated as the 1-voxel neighbourhood surrounding bricks in the pool 

is insufficient to allow proper normal sampling. 

To perform central differencing, the SDF should be sampled 6 times 

at 1-voxel offsets along the 3 primary axes from the point at which the 
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normal is to be calculated. As sampling the SDF using linear filtering 

requires an additional 1-voxel neighbourhood, therefore, calculating 

normals with this method requires a 2-voxel neighbourhood. Consequently, 

calculating the normals at the edge of a brick will cross the boundary into 

the adjacent brick and result in an incorrect normal. This could be solved 

by storing a 2-voxel neighbourhood around each brick. However, this would 

dramatically increase the percentage of adjacency data of total brick data 

to 78.4%.  

To combat this, the offset for the central-differencing method was 

decreased to a ½ voxel offset. This prevents the sampler from reading 

across brick boundaries but exaggerates noise within the surface normals 

due to the low precision of the volume. This can be seen in Figure 30. 

One solution would be to instead, in the cases where bilinear sampling 

would cross brick boundaries, point-sample the required brick and 

manually interpolate. This will lead to a significant increase in divergent 

texture accesses, but the required voxel will be correctly sampled. 

However, this is very non-trivial to implement in the structure implemented 

in this research, as compacting the brick array means brick indices can no 

longer be inferred from 3D co-ordinates. Consequently, there is no simple 

way to retrieve a texture co-ordinate within the brick pool from an arbitrary 

point in space. A separate look-up table of Morton codes to brick indices 

would need to be constructed and maintained. Nevertheless, even 

sampling the correct voxels will still contain noise due to the limited 

precision of the volume, so this would not entirely solve the issue. 

An alternative solution is to use the analytical normal method 

presented by (Evans, 2022), which provides normals that are continuous 

across voxel boundaries but not quite true to the actual surface geometry. 

Nevertheless, Evans found that the continuity is enough for it to be 

aesthetically acceptable and the deviation from the true geometric normal 

is small enough to be imperceptible. 

In general, noise in the normals only presents itself most notably in 

the specular reflections of highly smooth and reflective surfaces, such as 

smooth metallic materials. The noise is much less pronounced for rougher 

surfaces. 
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5.2 Critical Evaluation 

The fact that different brick counts were obtained when constructing 

objects with and without edit culling, as shown in Table 4 and Table 5, could 

suggest an inaccuracy in the edit culling algorithm that will produce 

different geometry than expected. This is investigated in Figure 32, which 

displays the difference between the Drops scene rendered with and without 

edit culling. There does exist differences, which confirms that the edit 

culling algorithm does not correctly cull edits in all cases. However, these 

differences are imperceptible without the exaggeration and magnification 

exerted in Figure 33. It is unclear if these imperfections are significant 

enough to produce a perceptibly incorrect surface without magnification. 

The difference in brick count between the scenes rendered with and 

without edit culling is larger than the visual error in the edit culling algorithm 

seen in Figure 33 would suggest. This could be explained by a limitation in 

the evaluation methodology. Upon disabling edit culling, the scene was 

reset and then progressed to timestamp t = 5s. Due to floating point 

precision and variable frame time, the timestamp at which the scene was 

measured with edit culling enabled and disabled could differ by a small 

amount, causing the slight difference in brick count. Nevertheless, it is 

unlikely that this had a marked effect on the construction performance. 

 

It can be suggested that there is a trade-off to be made with selecting a 

brick size to construct an object with. As stated previously, the most 

expensive stage of construction is brick evaluation. The cost of evaluation 

is largely dependent on the nature of the edits constituting the object. This 

was the motivation behind implementing the edit culling scheme. An 

implication of this is the possibility that decreasing the brick size can 

improve the construction performance. 

Regardless of the culling scheme, larger bricks are more likely to 

intersect with a greater number of edits. This is especially true for edits 

utilizing smooth blending. Conversely, it is likely that small bricks will 

intersect fewer edits. With a good edit culling solution, these small bricks 

will be very fast to evaluate. It can therefore be assumed that the quantity 
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and properties of the edits should be considered when selecting the optimal 

brick size to construct an object with. 

Where large numbers of edits are clumped together in very close 

proximity, the potential performance benefit of edit culling is diminished. 

This is the worst-case scenario for construction. Thankfully, this is an 

uncommon situation for game assets – it is less likely that a clump of edits 

will be a natural way to construct a model.  

However, this does motivate the concept of simplifying an edit list 

prior to construction. It is possible for two edits to precisely cancel each 

other out – a union followed by the subtraction of an identical edit will nullify 

any effect that the union may have had. Therefore, the union could be 

removed from the edit list without any affect to the resulting geometry. 

Solving this issue programmatically is not trivial, and perhaps simply best 

left as advice for end users to create performant geometry. 

 

One of the issues that emerges from these findings is that the discretization 

of the distance field is a slow process and challenging to perform at fast 

enough rates to allow use within real-time. Furthermore, it is a waste of 

time to evaluate a brick if a ray never intersects it. Therefore, a scheme 

could be construed where only bricks that intersect with a ray are ever 

evaluated. 

This could be achieved through a deferred evaluation scheme. If a 

ray intersects an AABB for which a brick has not yet been evaluated, then 

it could inform the CPU of this, and that brick can be scheduled for 

evaluation before the next render occurs. Therefore, bricks will be 

evaluated in a view-informed manner, at the expense of a latency of at 

least one frame. This works similar to the streaming technology in 

Gigavoxels (Crassin, 2009). 

The other option is to not perform brick evaluation at all and avoid 

the discretization of the distance field outright. Instead, construction will 

only produce the bricks and their index buffers. Upon ray-AABB 

intersection, the analytical distance functions of the relevant edits can be 

evaluated for each iteration of sphere-tracing. The results obtained in this 

research showed that evaluation can be fast with good edit culling. In cases 
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where the object is far away or obscured, it is speculated this method could 

potentially be faster than evaluating the entire distance field, as only 

samples that are required to be visited will be evaluated. However, in poor 

cases where edit culling is not effective this method would likely become 

prohibitively slow. Another advantage of this method is the resolution and 

precision of the surface would no longer be bound by the discretization of 

the volume. This would allow the resolution of the surface to adjust 

dynamically to match the requirements of the viewpoint. 

 

In this artefact, it was chosen that bricks would be 83 samples in size. This 

was chosen mainly due to the convenient mapping between samples and 

threads in a group but does not necessarily need to be so. (Crassin, 2009) 

suggests an example implementation where bricks are 323 samples in size. 

The effect of varying the brick resolution could be investigated. 

Using higher resolution bricks, for example, 103 bricks (83 with a 1 

voxel neighbourhood), could be implemented using a compute shader 

containing 103 threads – within the maximum limit of 1024 threads in a 

group. Alternatively, the thread group dimensions could also remain at 83, 

where 488 of the 512 threads would evaluate two samples to populate a 

103 brick. The effect on construction performance between the two thread 

group sizes could be investigated to determine if the work imbalance in the 

83-thread model has any impact. The effect on rendering performance and 

visual fidelity could also be investigated. 103 bricks could also facilitate the 

2-voxel neighbourhood required for correct surface normals as calculated 

with the central-differencing method.  
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Chapter 6 Conclusion and Future Work 

6.1 Overview 

This study set out to investigate the feasibility of SDF-based geometry that 

can be modified in real-time within a game context. This was done by 

implementing an application that can sparsely store SDF geometry as a 

discrete distance field and render it via raytracing. The structure 

implemented in this application was based on the previous work by 

(Crassin, 2009), (Laine & Karras, 2010), and (Evans, 2022). 

A construction algorithm was designed and implemented such that 

this geometry could be reconstructed in real-time. This algorithm worked in 

a top-down approach, iteratively refining bricks into sub-bricks. Edit culling 

optimizations were implemented into the construction pipeline to make it 

suitable for real-time performance. 

This study has demonstrated the feasibility of using modifiable SDF 

objects in a real-time application. The construction algorithm could create 

objects composed of hundreds of primitive edits and hundreds of 

thousands of bricks at interactive framerates. Crucially, the edit culling 

algorithm implemented into the construction pipeline reduced construction 

times from multiple seconds to within 100ms. Through reconstructing each 

frame, the objects can be animated and dynamic, which was either not 

possible or documented in previous work. The construction algorithm was 

designed to make effective use of the GPU hardware. This was achieved 

in parts; at smaller brick sizes, SM throughput reached as high as 80%, 

and brick evaluation saw occupancy of over 95%. Hierarchical brick 

building only achieved a maximum occupancy of approximately 30%, so 

further optimizations are worthwhile. 

The study has also shown that rendering SDF objects using a 

combination of hardware-accelerated raytracing and software sphere-

tracing was sufficiently fast for real-time use. An interesting finding was that 

the time taken to render an object was not proportional to the number of 

bricks of which it was composed. 

A limitation in this study is that correct surface normals were not able 

to be obtained numerically at any brick size. Increasing the resolution of 
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the object increased the frequency of the noise in the surface normals but 

did not reduce its visual prevalence. This is exacerbated by a lack of 

neighbourhood information within each brick, which limits the sampling 

offset and contributes to the visually displeasing noise in the surface 

normals. This noise produces perceptibly incorrect specular lighting and 

reflections from secondary rays and limits the use of this technology in a 

game context, where artefact-free rendering is extremely important. 

While the study found that rendering time scales well with the 

number of bricks composing a scene, significantly improved edit culling 

would be required to make this technology useful for a game to allow for 

objects composed of a significantly greater number of edits. The culling 

technique in this application is a promising proof-of-concept that is effective 

for a project of this scale, and it has scope for future optimization for more 

widespread use. 

6.2 Future Work 

Further research might explore a precise optimization of brick size. For 

example, for an object to be constructed from a specific edit list and 

rendered from a specific viewpoint, there must exist an optimal brick size 

that would allow for the fastest construction time, while not compromising 

on the visual fidelity of the object. The fastest construction time will be some 

optimization between constructing as few bricks as possible, while also 

evaluating as few edits per brick as possible. This is unlikely to be generally 

trivial to identify, as many factors affect construction time, including the 

amount of smooth blending used within edits, and the complexity to 

evaluate each individual edit. 

This could motivate future research to investigate the possibility and 

usefulness of a level-of-detail scheme, similar to the idea implemented in 

Gigavoxels. LOD systems are prevalent in games, for both improving visual 

fidelity and performance. However, maintaining multiple levels of detail for 

an SDF object will come with significant construction overhead. As shown 

in this study, rendering time does not correlate with brick size, and 

consequently LOD schemes may not improve rendering times either. The 

implementation and evaluation of such a scheme into the technology 
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presented in this study would be beneficial to further understanding the 

application of this technology within a game context. 

Another potential direction for future research to tackle level-of-

detail would be to investigate the possibility of on-the-fly edit evaluation, as 

mentioned in section 5.2, removing the need for a brick pool and the 

discretization of the distance field. This would likely require the 

investigation of highly improved edit culling schemes to be feasible for the 

real-time rendering of objects composed of many edits. 

Future studies could also investigate to which degree the analytical 

intersection method proposed by (Evans, 2022) affects the time taken to 

render SDF objects and investigate if their method of calculating surface 

normals analytically improves the fidelity issues present in this study to 

make this technology suitable for a game. 

Finally, future research might further explore how shading attributes 

for the geometry may be integrated into the technology presented in this 

study. Whether building photorealistic environments or stylised worlds, 

materials and shading models are critical to bring the geometry used in a 

virtual environment to life. Using a discrete distance field allows for the 

storage of attributes per voxel, which is generally much finer-grained than 

per-vertex as would be in a triangle mesh. This could be taken advantage 

of to produce highly detailed geometry. A future investigation could 

determine the methods, advantages, and limitations of storing shading 

attributes at a per-voxel basis. 
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Appendices  

Appendix 1 – Rendering Complete Data 
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Appendix 2 – Construction Complete Data 
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